编辑:
2014-05-29
∴∠2=∠3,∠1=∠4.
又∵AD=AB,
∴△ADF≌△BAE.
12.解:(1)四边形OCED是菱形.理由如下:
∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形.
又∵在矩形ABCD中,OC=OD,
∴四边形OCED是菱形.
(2)连接OE.由菱形OCED,得CD⊥OE,
∴OE∥BC.
又∵CE∥BD,∴四边形BCEO是平行四边形.
∴OE=BC=8.
∴S四边形OCED=12OE•CD=12×8×6=24.
13.D 14.2-1
15.(1)证明:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°.
∵AE=AF,∴Rt△ABE≌Rt△ADF.
∴BE=DF.
(2)解:四边形AEMF是菱形.证明如下:
∵四边形ABCD是正方形,
∴∠BCA=∠DCA=45°,BC=DC.
∵BE=DF,∴BC-BE=DC-DF,即CE=CF.
∴OE=OF.
∵OM=OA,∴四边形AEMF是平行四边形.
∵AE=AF,∴平行四边形AEMF是菱形.
16.(1)证明:∵沿对角线BD对折,点C落在点C′的位置,∴∠A=∠C′,AB=C′D,
∴在△GAB与△GC′D中,
∠A=∠C′,∠AGB=∠C′GD,AB=C′D,
∴△GAB≌△GC′D.
∴AG=C′G.
(2)解:∵点D与点A重合,得折痕EN,
∴DM=4 cm,NM=3 cm.
由折叠及平行线的性质,得
∠END=∠NDC=∠NDE,
∴EN=ED.设EM=x,则ED=EN=x+3.
由勾股定理,得ED2=EM2+DM2,
即(x+3)2=x2+42.
解得x=76,即EM=76.
标签:数学暑假作业
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。