九年级数学上册用公式法求解一元二次方程同步试卷含答案(北师大版)

编辑:

2016-09-14

【分析】根据方程有两个不相等的实数根,得到根的判别式大于0,即可求出k的范围.

【解答】解:∵方程x2﹣2x+3k=0有两个不相等的实数根,

∴△=4﹣12k>0,

解得:k< .

故选A.

【点评】此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.

5.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是(  )

A. B.

C. D.

【考点】根的判别式;一次函数的图象.

【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可.

【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,

∴△=4﹣4(kb+1)>0,

解得kb<0,

A.k>0,b>0,即kb>0,故A不正确;

B.k>0,b<0,即kb<0,故B正确;

C.k<0,b<0,即kb>0,故C不正确;

D.k>0,b=0,即kb=0,故D不正确;

故选:B.

【点评】本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.

6.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是(  )

A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠2

【考点】根的判别式;一元二次方程的定义.

【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值范围.

【解答】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,

∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,

标签:数学试卷

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。