编辑:
2015-01-10
三. 解答题
25(8分).如图,在平面直角坐标系中,双曲线 和直线 交于A,B两点,点A的坐标为(-3,2),BC⊥y轴于点C,且 .
(1)求双曲线和直线的解析式;
(2)直接写出不等式 的解集.
26.(8分) 如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连结AD、BD.
(1)求证:∠ADB=∠E;
(2)当AB=5,BC=6时,求⊙O的半径.
27.(10分)某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:
x(单位:台) 10 20 30
y(单位:万元∕台) 60 55 50
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求该机器的生产数量;
(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)
28.(10分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,
(1)求证:AC2=AB•AD;(2)求证:CE∥AD
(3)若AD=4,AB=6,求 的值.
29. (12分) 如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.
(1)求抛物线的解析式;
(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时点P的坐标。
答案
题号 1 2 3 4 5 6 7 8 9 10
答案 D B B A C B C A A A
题号 11 12 13 14 15 16 17 18 19 20
答案 B C A A D D B C D C
21. 4,-1 22 . -2 23. 24. 或2
25.解:(1) ∵点A(-3,2)在双曲线 上,∴ ,∴ ∴双曲线的解析式为 . •••••••••••••••••• 2分∵点B在双曲线 上,且 ,设点B的坐标为( , ),
∴ ,解得: (负值舍去).
∴点B的坐标为(1, ). •••••••••••••••••• 4分
∵直线 过点A,B,
∴ 解得:
∴直线的解析式为: ••••••••••••••••• 6分
(2)不等式 的解集为: 或 ••••••••• 8分
26 (1)证明:∵在△ABC中,AB=AC,
∴∠ABC=∠C.
∵DE∥BC,
∴∠ABC=∠E,
∴∠E=∠C,
又∵∠ADB=∠C,
∴∠ADB=∠E;
标签:数学试卷
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。