编辑:
2013-12-16
∴ .
又∵ 点是函数 ( )上的一点,
∴ ,即得 ,
∴ 四边形 的面积不变,为8. (2)∵ 四边形 是矩形,
∴ 对角线的交点是对角线的中点,即点 是 的中点.
∵ 点 的坐标是( ),
∴ 点 的坐标为( ).
(3)由(2)知,点 是 的中点,
∵ 点 的坐标为( ),
∴ 点 的坐标为( ).
又∵ 点 是函数 ( )图象上的一点,
∴ 代入函数解析式得: ,即 .
29.分析:(1)因为 ,
故 与 的关系式为 .
(2)用配方法化简函数关系式求出 的最大值即可.
(3)令 ,求出 的解即可.
解:(1) ,
∴ 与 的关系式为 .
(2) ,
∴ 当 时, 的值最大.
(3)当 时,可得方程 .
解这个方程,得 .
根据题意, 不合题意,应舍去,
∴ 当销售单价为75元时,可获得销售利润2 250元.
30.分析:(1)根据圆周角定理求出∠ADC、∠ACD的度数,由三角形内角和为180 即可
求得;
(2)根据三角形的内角和定理求出∠BAC,根据三角形的外角性质求出∠AEC、∠AFC;
(3)连接OC,过O作OQ⊥AC于Q,求出∠AOC的度数,高OQ和弦AC的长,再
由扇形和三角形的面积相减即可.
解:(1)∵ 弧AC=弧AC,∴ ∠ADC=∠ABC=60°.
∵ AD是⊙O的直径,∴ ∠ACD=90°,
∴ .
(2)∵ ,
∴ ,
∴ ,
∴ ,
.
(3)如图,连接OC,过点O作 ⊥ 于点Q,
∵ ∠ =30°, =3,
∴ .
由勾股定理得: ,
由垂径定理得: .
∵ ,
∴ 阴影部分的面积是 .
小编再次提醒大家,一定要多练习哦!希望这篇九年级数学家庭作业试题(浙教版附答案)能够帮助你巩固学过的相关知识。
相关推荐:
标签:数学家庭作业
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。