相似多边形教案 人教版

编辑:

2013-07-15

(三)辨析研讨,知识深化。(14分钟)

1、议一议:

(1)观察下面两组图形,图(1)中的两个图形相似吗?为什么?图(2)中的两个图形呢?与同桌交流。 (课件出示图形)

(2)如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成比例吗?

(3)如果两个菱形相似,那么他们需要满足什么条件?

(设计意图:为了培养学生从多角度理解问题,我运用教材中两个典型的反例,引导学生讨论探究,使学生认识到:不相似的两个多边形的角也可能对应相等,不相似的两个多边形的边也可能对应成比例;反过来说:只具备各角分别对应相等或各边分别对应成比例的多边形不一定相似。进而使学生明确:判断两个多边形形相似,“各角分别对应相等、各边分别对应成比例”这两个条件缺一不可。通过正反两方面的对照,能使学生更深刻地理解相似多边形的定义。这是个易错点,教学时应注意给学生留出充分思考交流的时间。另外在设计时,我在教材原有内容的基础上添加了菱形的情况(见课件),引导学生探索两个菱形相似需要满足什么样的条件。)

2、做一做。

设问:学到这儿,你认为黑板边框内外边缘所成的这两个矩形相似吗?请你计算说明。课件出示问题:

一块长3m、宽1.5m的矩形黑板,镶在其外围的木质边框宽7.5cm.边框的内外边缘所成的矩形相似吗?为什么?(学生自主探索解决)

(设计意图:为了满足学生多样化的学习需求,使不同的学生都能获得令自己满意的数学知识,我把此题进行了适当的拓展和延伸。)

拓展一:如果将黑板的上边框去掉,其他条件不变。

那么边框内外边缘所成的矩形相似吗?为什么?

拓展二:在拓展一的基础上,如果矩形的长为2a,宽为a,

边框的宽度为x。那么边框内外边缘所成的矩形还相似吗?为什么?

(设计意图:引导学生讨论计算,解决问题。目的是让学生明确并不是所有相互套叠的两个矩形都不相似。使学生初步认识到直观有时是不可靠的,研究数学问题需要在提出猜想的基础上进行推理和计算,帮助学生养成严谨的学风。)

(四)学以致用,巩固提高。(6分钟)

慧眼识金!

1、判断下列各题是否正确:

(1)所有的矩形都相似。

(2)所有的正方形都相似。

(3)对应边成比例的两个多边形相似 问题解决!

2、下图中两面国旗相似,则它们对应边的比为 。

3、如图,两个正六边形广场砖的边长分别为a和b,它们相似吗?为什么?

(课件出示图形)

(设计意图:为了体现相似图形在生活中的广泛应用,我以实际问题为背景设计练习题。这是一组基础题,意在巩固相似多边形的定义以及相似比的计算。)

(五)课堂小结,知识升华。(2分钟)

师生共同完成。

(设计意图:教师首先肯定学生在课堂中大胆的猜想和思维的积极性,然后引导学生从几方面进行反思:我学会了什么……,我最感兴趣的是……,我发现了什么……,我能解决……,我获得的数学方法是……帮助学生构成新的知识网络,形成技能。)

(六)布置作业:

1、 P113 习题第3题

2、画一画:在方格纸中画出两个相似多边形。

3、探究题:小林在一块长为6m,宽为4m一边靠墙的矩形的小花园周围,栽种了一种蝴蝶花装饰,这种蝴蝶花的边框宽为20cm,边框内外边缘所围成的两个矩形相似吗?第1、2题作为必做题;第3题作为选做题,是对课堂上“做一做”的再次拓展和延伸:当矩形的长与宽的比不再是2:1时,边框内外边缘所围成的两个矩形还相似吗?

板书设 4、相似多边形

定义: 各角对应相等,

各边对应成比例

表示方法:“∽”

相似比:

 

更多精彩推荐:  2018威廉希尔决赛赔率  > 初三 > 数学 > 初三数学教案

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。