用列举法求概率(第1课时)

编辑:

2013-06-29

4.通过对例1、例2的讨论探究,学习用列举法求概率。

5.通过练习,巩固用列举法求概率。

6.回顾本节知识和解决问题的方法,巩固、提高、提高、发展。

2.教学过程设计

问题与情境

师生行为

设计意图

「活动1」

回顾上节概率的求法。

教师引入:

前面我们用随机事件发生的频率所逐渐稳定得到的常数作为这个事件发生的概率,对于某些特殊类型的试验,实际不需要做试验,通过列举法分析就可以得到随机事件的概率.

帮助学生回忆上节课所学的知识,为本节课的学习准备好知识基础.

「活动2」

看试验,找特点,了解古典概型,初识概率的求法。

展示书中两个试验。(演示课件第2张幻灯片)

问题

(1)两个试验有什么共同的特点?

(2)对于古典概型的试验,如何求事件的概率?

学生分析、思考解答:

(1)一次试验中,可能出现的结果是有限多个;各种结果发生的可能性相等. 具有以上特点的试验称为古典概型.

(2)对于古典概型的试验,我们可以用事件所包含的各种可能的结果在全部可能的试验结果中所占的比作为事件的概率.

教师讲解概率求法:

一般地,如果在一次试验中,有种可能的结果,并且它们发生的可能性都相等,事件A包含其中的种结果,那么事件A发生的概率为.

在本次活动中,教师应重点关注学生参与数学活动是否积极主动,全神贯注。

使学生进一步在具体情境中了解古典概型的意义,能阐明运用列举法计算简单事件发生的概率的理由,为本节课探究用列举法求概率奠定基础。

「活动3」

探究在概率公式P(A)= 中m、n之间的数量关系,P(A)的取值范围。(演示课件第3张幻灯片)

学生思考,解答、发言:

n>0, m≥0,m≤n,0≤P(A) ≤1.

当m=n时A为必然事件,概率P(A)=1,当m=0时,A为不可能事件,概率P(A)=0.

教师组织学生思考、讨论、解答.

在本次活动中,教师应重点关注学生对随机事件、必然事件、不可能事件及其概率的再认识。

进一步体会随机事件、必然事件、不可能事件及其概率。

「活动4」

通过解决问题学习用列举法求概率。

问题1(演示课件第4张幻灯片)

例1  掷1个质地均匀的正方体骰子,观察向上一面的点数,求下列事件的概率:

(1)点数为2;

(2)点数是奇数;

(3)点数大于2且不大于5.

问题2(演示课件第5、6张幻灯片)

例1变式  掷1个质地均匀的正方体骰子,观察向上一面的点数,

(1)求掷得点数为2或4或6的概率;

(2)小明在做掷骰子的试验时,前五次都没掷得点数2,求他第六次掷得点数2的概率。

问题3(演示课件第7张幻灯片)

例2  如图:是一个转盘,转盘分成7个相同的扇形,颜色分为红、黄、绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时,当作指向右边的扇形)求下列事件的概率:

(1)指向红色;

(2)指向红色或黄色;

(3)不指向红色。

问题4(演示课件第8、9两张幻灯片)

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。