两圆的公切线

编辑:

2013-06-18

四)应用、反思、总结

例1、已知:⊙O1、⊙O2的半径分别为2cm和7cm,圆心距O1O2=13cm,AB是⊙O1、⊙O2的外公切线,切点分别是A、B.求:公切线的长AB.

分析:首先想到切线性质,故连结O1A、O2B,得直角梯形AO1O2B.一般要把它分解成一个直角三角形和一个矩形,再用其性质.(组织学生分析,教师点拨,规范步骤)

解:连结O1A、O2B,作O1A⊥AB,O2B⊥AB.

过 O1作O1C⊥O2B,垂足为C,则四边形O1ABC为矩形,

于是有

O1C⊥C O2,O1C= AB,O1A=CB.

在Rt△O2CO1和.

O1O2=13,O2C= O2B- O1A=5

AB= O1C=  (cm).

反思:(1)“转化”思想,构造三角形;(2)初步掌握添加辅助线的方法.

例2*、如图,已知⊙O1、⊙O2外切于P,直线AB为两圆的公切线,A、B为切点,若PA=8cm,PB=6cm,求切线AB的长.

分析:因为线段AB是△APB的一条边,在△APB中,已知PA和PB的长,只需先证明△PAB是直角三角形,然后再根据勾股定理,使问题得解.证△PAB是直角三角形,只需证△APB中有一个角是90°(或证得有两角的和是90°),这就需要沟通角的关系,故过P作两圆的公切线CD如图,因为AB是两圆的公切线,所以∠CPB=∠ABP,∠CPA=∠BAP.因为∠BAP+∠CPA+∠CPB+∠ABP=180°,所以2∠CPA+2∠CPB=180°,所以∠CPA+∠CPB=90°,即∠APB=90°,故△APB是直角三角形,此题得解.

解:过点P作两圆的公切线CD

∵ AB是⊙O1和⊙O2的切线,A、B为切点

∴∠CPA=∠BAP  ∠CPB=∠ABP

又∵∠BAP+∠CPA+∠CPB+∠ABP=180°

∴ 2∠CPA+2∠CPB=180°

∴∠CPA+∠CPB=90°  即∠APB=90°

在 Rt△APB中,AB2=AP2+BP2

说明:两圆相切时,常过切点作两圆的公切线,沟通两圆中的角的关系.

(五)巩固练习

1、当两圆外离时,外公切线、圆心距、两半径之差一定组成( )

(A)直角三角形 (B)等腰三角形 (C)等边三角形 (D)以上答案都不对.

此题考察外公切线与外公切线长之间的差别,答案(D)

2、外公切线是指

(A)和两圆都祖切的直线 (B)两切点间的距离

(C)两圆在公切线两旁时的公切线 (D)两圆在公切线同旁时的公切线

直接运用外公切线的定义判断.答案:(D)

3、教材P141练习(略)

(六)小结(组织学生进行)

知识:两圆的公切线、外公切线、内公切线及公切线的长概念;

能力:归纳、概括能力和求外公切线长的能力;

思想:“转化”思想.

(七)作业:P151习题10,11.

第二课时 两圆的公切线(二)

教学目标:

(1)掌握两圆内公切线长的求法以及公切线与连心线的夹角或公切线的交角;

(2)培养的迁移能力,进一步培养学生的归纳、总结能力;

(3)通过两圆内公切线长的求法进一步向学生渗透“转化”思想.

教学重点:

两圆内公切线的长及公切线与连心线的夹角或公切线的交角求法.

教学难点:

两圆内公切线和两圆内公切线长学生理解的不透,容易混淆.

教学活动设计

(一)复习基础知识

(1)两圆的公切线概念:公切线、内外公切线、内外公切线的长.

(2)两圆的位置与公切线条数的关系.(构成数形对应,且一一对应)

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。