正多边形和圆

编辑:

2013-06-18

(五)初步应用

P157练习

1、(口答)矩形是正多边形吗?菱形是正多边形吗?为什么?

2.求证:正五边形的对角线相等.

3.如图,已知点A、B、C、D、E是⊙O的5等分点,画出⊙O的内接和外切正五边形.

(六)小结:

知识:(1)正多边形的概念.(2)n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形.

能力和方法:正多边形的证明方法和思路,正多边形判断能力

(七)作业 教材P172习题A组2、3.

教学设计示例2

教学目标:

(1)理解正多边形与圆的关系定理;

(2)理解正多边形的对称性和边数相同的正多边形相似的性质;

(3)理解正多边形的中心、半径、边心距、中心角等概念;

(4)通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;

教学重点:

理解正多边形的中心、半径、边心距、中心角的概念和性质定理.

教学难点:

对“正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆”的理解.

教学活动设计:

(一)提出问题:

问题:上节课我们学习了正多边形的定义,并且知道只要n等分(n≥3)圆周就可以得到的圆的内接正n边形和圆的外切正n边形.反过来,是否每一个正多边形都有一个外接圆和内切圆呢?

(二)实践与探究:

组织学生自己完成以下活动.

实践:1、作已知三角形的外接圆,圆心是已知三角形的什么线的交点?半径是什么?

2、作已知三角形的内切圆,圆心是已知三角形的什么线的交点?半径是什么?

探究1:当三角形为正三角形时,它的外接圆和内切圆有什么关系?

探究2:(1)正方形有外接圆吗?若有外接圆的圆心在哪?(正方形对角线的交点.)

(2)根据正方形的哪个性质证明对角线的交点是它的外接圆圆心?

(3)正方形有内切圆吗?圆心在哪?半径是谁?

(三)拓展、推理、归纳:

(1)拓展、推理:

过正五边形ABCDE的顶点A、B、C、作⊙O连结OA、OB、OC、OD.

同理,点E在⊙O上.

所以正五边形ABCDE有一个外接圆⊙O.

因为正五边形ABCDE的各边是⊙O中相等的弦,所以弦心距相等.因此,以点O为圆心,以弦心距(OH)为半径的圆与正五边形的各边都相切.可见正五边形ABCDE还有一个以O为圆心的内切圆.

(2)归纳:

正五边形的任意三个顶点都不在同一条直线上

它的任意三个顶点确定一个圆,即确定了圆心和半径.

其他两个顶点到圆心的距离都等于半径.

正五边形的各顶点共圆.

正五边形有外接圆.

圆心到各边的距离相等.

正五边形有内切圆,它的圆心是外接圆的圆心,半径是圆心到任意一边的距离.

照此法证明,正六边形、正七边形、…正n边形都有一个外接圆和内切圆.

定理: 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.

正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距.正多边形各边所对的外接圆的圆心角都相等.正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角.正n边形的每个中心角都等于 .

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。