编辑:haiyangcms
2013-06-13
(一)教学目标
1.知识与技能:通过实例理解等比数列的概念;探索并掌握等比数列的通项公式;理解这种数列的模型应用,体会等比数列与指数函数的关系.
2.过程与方法:通过丰富实例抽象出等比数列模型,经历由发现几个具体数列的等比关系,归纳出等比数列的定义;通过与等差数列的通项公式的推导类比,探索等比数列的通项公式;通过与指数函数的图象比较,探索等比数列的通项公式的图象特征及与与指数函数的关系。通过例题体会通项公式与方程、方程组之间的联系。
3.情态与价值:感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,培养学生从实际问题中抽象出数列模型的能力.
(二)教学重、难点
重点:等比数列的定义和通项公式
难点:等比数列通项公式的推导过程
(三)学法与教学用具
学法:首先由几个具体实例抽象出等比数列的模型,从而归纳出等比数列的定义;与等差数列通项公式的推导类比,推导等比数列通项公式,通过与指数函数的图象比较,探索等比数列的通项公式的图象特征及与指数函数的关系。
教学用具:投影仪
(四)教学设想
首先先创设情境,从具体四个实例引入新课,得到四组数列;通过类比等差数列得出等比数列的定义;类比等差中项得出等比中项;探究首项和公比是决定一个等比数列的必要条件;类比等差数列的通项公式得出等比数列通项公式;例题巩固;等比数列的对称性;探究等比数列与指数函数的关系,小结。
(五)教学过程
Ⅰ.课题导入
1、复习:等差数列的定义:一般地,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差;公差通常用字母d表示·