《相似三角形的判定》说课稿

编辑:

2013-06-12

5、深入思考,强化理解

思考问题:(投影)

1、如果两个三角形仅有一对角对应相等的,那么它们是否一定相似?

2、有一个锐角对应相等的两个直角三角形是否一定相似?

3、顶角相等的两个等腰三角形是否一定相似?

4、有一个角相等的两个等腰三角形相似。

(设计意图:思考题的目的是为了让学生深入地理解相似三角形的判定方法中两个三角形必须满足两个角对应相等的条件,为更好地应用做准备,同时发展学生的说理能力。)

(三)例题精讲,规范解答:

例1 已知如图在△ABC中,已知∠ACB=90°,CD⊥AB于D,请找出图中的相似三角形,并说明理由。

解:△CBD ∽△ABC ∽△ACD

∵ ∠B=∠B   ∠CDB=∠ACB=90°

∴△CBD ∽△ABC

同理△ABC ∽△ACD

∴△CBD ∽△ABC ∽△ACD

例2已知如图在△ABC中,DE∥BC,EF∥AB,证明:△ADE∽△EFC。

证明:∵DE∥BC,EF∥AB

∴∠ADE=∠B=∠EFC,

∴∠AED=∠C,

∴△ADE∽△EFC(如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似)

(设计意图:在分析两个例题的过程中教会学生审题的方法,一方面从条件出发,通过思维的发散,得出一些结论;另一方面根据解决问题的需要明确要寻找的条件,做的有的放矢,提高学生合情推理的能力。两道例题的解题过程的书写是为了加强对推理过程的理解,并能运用自己的方式有条理的表达推理过程。)

(四)基础知识检测:

如图,□ABCD,过点A的直线交BD、BC、DC的延长线于点E、F、G.

(1)与△ABD相似的三角形有____________________;

(2)与△AED相似的三角形有____________________;

(3)与△AEB相似的三角形有____________________;

(4)与△GFC相似的三角形有____________________;

(5)图中共有__________对相似三角形。

(设计意图:为了进一步巩固相似三角形的判定方法,并熟悉由平行线构造的另一类相似的基本图形“X”型。)

(五)综合能力检测:

1、在△ABC与△DEF中, ∠A=70°∠B=42°∠D=70°∠E=68°,这两个三角形相似吗?为什么?

2、已知:Rt△ABC中,∠ACB=90°,点E是AC边所在直线上一点,且ED⊥AB交AB(或AB延长线)于点D。思考:当点E在直线AC上运动时观察图中出现的相似三角形。

(设计意图:习题是让学生在探究过程中体验到在找对应角相等时要十分重视隐含条件,如公共角、对顶角、直角等,培养学生养成认真观察,注意寻找图形中的隐含信息的意识,设置开放性练习,拓展学生思维空间)

(六)课堂总结: 本节课你有什么收获?

(让学生从各个角度谈自己的收获)

1.、相似三角形的判定方法:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.

2、在找对应角相等时要十分重视隐含条件,如公共角、对顶角、直角等。

3、掌握由平行线构造的两类相似图形:一类是A字型,另一类是X型。

4、常用的找对应角的方法:①已知角相等;②已知角度计算得出相等的对应角;③公共角;④对顶角;⑤同角的余(补)角相等。

(七)布置作业,巩固知识:课后习题。

(八)教学反思:

新课程改革的核心是促进学生学习方式的变革。新课程的基本理念之一是“注重科学探究的过程,提倡学习方式的多样化。” 本课通过探究性学习、合作性学习、体验性学习等,实现学习方式的多样化。从判定方法的寻找到所有的例题和习题都由学生主动探究并独立完成书写,老师只是在必要时作适当启发,使学生在老师设置的教学情境中,掌握学习的主动权,一直处于一种自主探索知识的状态,产生一种满足、快乐、自豪的积极情绪体验,从而增强学习的信心,提高学习兴趣,产生自我激励、自我要求上进的心理,使其成为进一步学习的内部.

 

更多精彩内容请点击: 2018威廉希尔决赛赔率  > 初三 > 数学 > 初三数学教案

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。