编辑:
2013-06-12
顶点坐标
开口方向 当a>0时
开口方向当a<0时
y=ax2
Y=ax2+k
Y=a(x-h)2
y=a(x-h)2 +k
Y=ax2 +bx2 +c
3、二次函数y=ax2 +bx+c,当a>0时,在对称轴右侧,y随x的增大而___,在对称轴左侧,y随x的增大而 ___;当a<0时,在对称轴右侧,y随x的增大而 ____, 在对称轴左侧,y随x的增大而_____
4、抛物线y=ax2 +bx+c,当a>0时图象有最____点,此时函数有最_____值;当a<0时图象有最______点,此时函数有最_______值。
二、探究、讨论、练习(先独立思考,再分组讨论,最后反馈信息)(屏幕显示)
1、已知二次函数y=ax2 +bx+c的图象如图所示,试判断下面各式的符号:
(1)abc (2)b2-4ac (3)2a+b (4)a+b+c 2、已知抛物线y=x2 +(2k+1)x-k2 +k
(1) 求证:此抛物线与x轴总有两个不同的交点;
(2)设A(x1 ,0)和B(x2 ,0)是此抛物线与x轴的两个交点,且满足x1 +x2 = -2k2 +2k+1,
①求抛物线的解析式
②此抛物线上是否存在一点P,使△PAB的面积等于3,若存在,请求出点P的坐标;若不存在,请说明理由。
三、归纳小结:
通过本节课的练习,你有什么收获和体会?
四、利用二次函数解决实际问题:
一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到的最大高度是3.5米,然后准确落入篮圈,已知篮球中心到地面的距离为3.05米,
(1)根据题意建立直角坐标系,并求出抛物线的解析式。
(2)该运动员的身高是1.8米,在这次跳投中,球在头顶上方0.25米,问:球出手时,他跳离地面的高度是多少?
五、作业:
已知抛物线y=x2+(1-2a)x+a2 (a≠0)与x轴交于两点A(x1,0),B(x2,0) , (x1≠x2)
(1)求a的取值范围,并证明A、B两点都在原点的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值。
六、教学反思:
1.以前的复习课只能利用黑板,课堂容量小,一节课的内容需要好几节课才能完成,优等生吃不饱,不能有效的利用课堂时间,让学生获取尽可能多的知识,教师累,学生苦。利用多媒体,可以把要讲的知识点、学生要做的练习全部展示给学生,节约了时间,做到了高容量、大密度,教学内容直观形象具体,能够充分调动学生学习的积极性,获得较好的教学效果。
2.教学效果明显,大部分学生掌握较好。
更多精彩内容请点击: 2018威廉希尔决赛赔率 > 初三 > 数学 > 初三数学教案
标签:初三数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。