《圆周角与圆心角的关系》说课稿

编辑:

2013-06-12

四、教学过程

(一)创设情境,导入新课

课件展示:以学生熟悉的足球射门游戏为背景,在实物场景中,抽象出几何图形。思考:球员射门成功的难易与什么有关?

学生活动:让学生自由发挥,相互交流 ,以境生问,以问激趣,导入新课

教师活动:回到课件展示,让学生观察思考:球圆在如图中的点D、E的位置射门,成功的难易相同吗?

顶点在圆周上;(2)两边与圆还有另一个交点。

我们已学过圆心角定义,谁能用类比方法给出符合上述两个特征的角的定义呢?在学生归纳出圆周角定义的基础上设置了一组辨析题:

判断下列图中的角是否是圆周角。

学生活动:观察并指出圆周角的特征,探索概念的形成,加深对圆周角概念的理解。

设计理念:通过富有挑战性问题情景的创设,将实际问题数学化,激发学生求知、探索欲望,让学生体验生活中圆周角的形象。运用已有知识引发学生产生联想,自主探讨新知。通过图形辨析,强化对圆周角概念中蕴含的两个特征的理解,达到教学目标中所要求的理解圆周角概念的目的。

(二)提出猜想,分类化归

回到课件展示,球员在另外两个位置射门,球员在如图中的点D、E的位置射门,成功的难以相同吗?

教师活动:先引导学生观察这三个角在图上的位置,它们所对的是同一段弧AC,再联系到学生已经学过的“同圆或等圆中,相等的弧所对的圆心角相等”,猜想:在同圆或等圆中,相等的弧所对的圆周角有什么关系?相等的弧所的圆周角与圆心角又有什么关系呢?

设计目的:把学生的思维引导到圆周角与圆心角的关系上,以“同一条弧所对”作为联系纽带,完成提出猜想这一教学环节。

动手操作:1、作圆心角∠AOC;2、作弧AC所对的圆周角。思考:弧AC所对的圆周角与圆心角的大小有什么关系?

师生互动:提出问题后,分三步进行:

第一步,探索与发现

老师提问:我们怎样发现同一条弧所对的圆周角和圆心角的数量关系呢?如果借助手中的工具应怎样做呢?让学生说出方法,完成测量工作。

第二步,交流与猜想

先让学生分小组交流度量的结果,并判断两角的数量关系。然后让学生口述结论。教师用“Z+Z”中的测量工具,测出同弧所对的圆周角与圆心角的度数,再次验证所得到的结论的正确性。。

第三步,推理与证明

又一次让学生相互交流、观察所作图形的异同,并对所作图形大致分类,在此基础上引出问题:你们发现了圆心和圆周角之间有哪些不同的位置关系?学生回答后,教师再归纳并动画演示予以验证

下面请看教学片断----圆周角与圆心角定理证明的探索过程。(插入教学片段)

学生已经有了解决问题的思路,要求所有学生写出三种情况的证明过程,老师展示图(1)图(2)的证明过程,并点学生演板图(3)的证明过程。

根据以上证明,由此我们可以得到什么结论呢?让学生自己归纳。教师板书:圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半。

设计理念:本节课的难点正在于此。依据“建构主义理论”,用化归思想推理验证圆周角定理,充分给予学生探索与交流的时间和空间,在建构数学模型的过程中,体会将一般情况转化成特殊情况的思维过程,理解添加辅助线的必要性,达到突破难点的目的。同时为了尊重学生的个体差异,满足多样化的学习需求,突出课程资源意识,创造性使用教材。我以教材中的例题为蓝本,打破教材中现有的分析预案。按照自己思考的设计原则,让学生根据自己所画图形,寻求解决问题的策略,并在合作交流中选择合适的方法,丰富数学活动经验,提高思维能力。

(三)尝试运用,巩固新课

当然,有了定理,我们还要知道怎么运用。所以,我以题组的形式编排了两组练习。

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。