编辑:
2013-04-15
证明:连结BE.
E是△ABC的内心
又∵∠1=∠2
∠1=∠2
∴∠1+∠3=∠4+∠5
∴∠BED=∠EBD
∴DE=DB
练习分析作出已知的锐角三角形、直角三角形、钝角三角形的内切圆,并说明三角形的内心是否都在三角形内.
(四)小结
1.教师先向学生提出问题:这节课学习了哪些概念?怎样作已知三角形的内切圆?学习时互该注意哪些问题?
2.学生回答的基础上,归纳总结:
(1)学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念.
(2)利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到任意一边的距离是圆的半径.
(3)在学习有关概念时,应注意区别“内”与“外”,“接”与“切”;还应注意“连结内心和三角形顶点”这一辅助线的添加和应用.
(五)作业
教材P115习题中,A组1(3),10,11,12题;A层学生多做B组3题.
以上是小编为大家整理的“初三数学三角形的内切圆教案设计”全部内容,更多相关内容请点击:
2018威廉希尔决赛赔率 > 初三 > 数学 > 初三数学教案
标签:初三数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。