编辑:sx_liuwy
2013-03-14
以下是威廉希尔app 为您推荐的线段的垂直平分线,希望本篇文章对您学习有所帮助。
线段的垂直平分线
教学目标:
1、经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力。
2、能够证明线段垂直平分线 的性质定理、判定定理及其相 关结论。
3、能够利用尺规作已知线段的垂直平分线;已知底边及底边上的高,能利用尺规作出等腰三角形。
教学过程:
引入:
剪一个三角形纸片,通过折叠 找出每条边的垂直平分线,观察这三条垂直平分线,你发现了什么?当利用尺规作出三角形三条边的垂直平分线时,你是否也发现了同样的结论 ?
定理:三角形三边的垂直平分 线相交于一点,并且这一点到三个顶点的距离相等。
证明:在△ABC中,设AB、BC的垂直平分线相交 于点P, 连接AP、BP、CP,
∵点P在线段AB的垂直平分线上
∴PA=PB(线段垂直平分线上的点到这条线段两个端点距离相等)
同理:PB=PC
∴PA=PC
∴点 P在AC的垂直平分线上
(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)。
∴AB,BC,AC的垂直平分线 相交于点P。
议一议:1、已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几个?所作的三角形都全等吗?(这样的三角形能作出无数多个,它们不都全等)
2、 已知等腰三角形底边及底边上的高,你能用尺规作出等腰三角形吗?能作几个?(满足条件的等腰三角形可 和出两个 ,分加位于已知边的两侧,它们全等)。
做一做:
已知底边上的高,求作等腰三角形。
已知:线段a、b
求作:△ ABC,使AB=AC,且BC=a,高AD=h.
]
作法:
(1)作线段BC=a(如图 ); (2)作线段BC的垂直平分线L,交BC于点D,
(3)在L上作线段DA,使DA=h (4)连接AB,AC 作业: 6.教学后记:
标签:初三数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。