点和圆的位置关系

编辑:sx_liuwy

2013-03-14

以下是威廉希尔app 为您推荐的点和圆的位置关系,希望本篇文章对您学习有所帮助。

 点和圆的位置关系

教学目标

(一)教学知识点

了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念.

(二)能力训练要求

1.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力.

2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.

(三)情感与价值观要求

1.形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.

2.学会与人合作,并能与他人交流思维的过程和结果.

教学重点

1.经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论.

2.掌握过不在同一条直线上的三个点作圆的方法.

3.了解三角形的外接圆、三角形的外心等概念.

教学难点

经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆.

教学方法

教师指导学生自主探索交流法.

教具准备

投影片三张

第一张:(记作§3.4A)

第二张:(记作§3.4B)

第三张:(记作 §3.4C)

教学过程

Ⅰ.创设问题情境,引入新课

[师]我们知道经过一点可以作无数条直线,经过两点只能作一条直线.那么,经过一点能作几个圆?经过两点、三点……呢?本节课我们将进行有关探索.

Ⅱ.新课讲解

1.回忆及思考

投影片(§3.4A)

1.线段垂直平分线的性质 及作法.

2.作圆的关键是什么?

[生]1.线段垂直平分线的性质是:线段垂直平分线上的点到线段两端点的距离相等.

作法:如下图,分别以A、B为圆心,以大于 AB长为半径画弧,在AB的两侧找出两交点C、D,作直线CD,则直线CD就是线段A B的垂直平分线,直线CD上的任一点到A与B的距离相等.

[师]我们知道圆的定义是:平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点即为圆心,定长即为半径.根据定义大家觉得作圆的关键是什么?

[生]由定义可知,作圆的问题实质上就是圆心和半径的问题.因此作圆的关键是确定圆心和半径的大小.确定了圆心和半径,圆就随之确定.

2.做一做(投影片§3.4B)

(1)作圆,使它经过已知点A,你能作出几个这样的圆?

(2)作圆,使它经过已知点A、B.你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?

(3)作圆,使它经过已知点A、B、C(A、B、C三点不在同一条直线上).你是如何作的?你能作出几个这样的圆?

[师]根据刚才我们的分析已知,作圆的关键是确定圆心和半径,下面请大家互相交换意见并作出解答.

[生](1)因为作圆实质上是确定圆心和半径,要经过已知点A作圆,只要圆心确定下来,半径就随之确定了下来.所以以点A以外的任意一点为圆心,以这一点与点A所连的线段为半径就可以作一个圆. 由于圆心是任意的.因此这样的圆有无数个.如图(1).

(2)已 知点A、B都在圆上,它们到圆心的距离都等于半径.因此 圆心到A、B的距离相等.根据前面提到过的线段的垂直平分线的性质可知,线段的垂直平分线上的点到线段两端点的距离相等,则圆心应在线段AB的垂直平分线上.在AB的垂直平分线上任 意取一点,都能满足到A、B两点的距离相等,所以在AB的垂直平分线上任取一点都可以作为圆心,这点到A的距离即为半径.圆就确定下来了.由于线段AB的垂直平分线上有无数点,因此有无数个圆心,作出的圆有无数个.如图(2).

(3)要作一个圆经过A、B、C三点,就是要确定一个点作为圆心,使它到三点的距离相等.因为到A、B两点距离相等的点的集合是线段AB的垂直平分线,到B、C两点距离相等的点的集合是线段BC的垂直平分线,这两条垂直平分线的交点满足到A、B、C三 点的距离相等,就是所作圆的圆心.

因为两条直线的交点只有一个,所以只有一个圆心,即只能作出一个满足条件的圆.

[师]大家的分析很有道理,究竟应该怎样找圆心呢?

3.过不在同一条直线上的三点作圆.

投影 片(§3.4C)

作法 图示

1.连结AB、BC

2.分别作AB、BC的垂直

平分线DE和FG,DE和

FG相交于点O

3.以O为圆心,OA为半径作圆

⊙O就是所要求作的圆[

他作的圆符合要求吗?与同伴交流.

[生]符合要求.

因为连结AB,作AB的垂直平分线ED,则ED上任意一点到A、B的距离相等;连结BC,作BC的垂直平分线FG,则FG上的任一点到B、C的距离相等.ED与FG的满足条件.

[师]由上可 知,过已知一点可作无数个圆.过已知两点也可作无数个圆,过不在同一条直线上的三点可以作一个圆,并且只能作一个圆.

不在同一直线上的三个点确定一个圆.

4.有关定义

由上可知,经过三角形的三个顶点可以作一个 圆,这个圆叫做三角形的外接圆(circumcircle of triangle),这个 三角形叫这个圆的内接三角形.

外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心(circumcenter).

Ⅲ.课堂练习

已知锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆,它们外心的位置有怎样的特点?

解:如下图.

O为外接圆的圆心,即外心.

锐角三角形的外心在三角形的内部,直角三角形的外心在斜边上,钝角三角形的外心在三角形的外部.

Ⅳ.课时小结

本节课所学内容如下:

1.经历不在同一条直线上的 三个点确定一个圆的探索过程.

方法.

3.了解三角形的外接圆,三角形的外心等概念.

Ⅴ.课后作业

习题3.6

Ⅵ.活动与探究

如下图,CD所在的直线垂直平分线段AB.怎样使用这样的工具找到圆形工件的圆心?

解:因为A、B两点在圆上,所以圆心必与A、B两点的距离相等,又因为和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,所以圆心在CD所在的直线上.因此使用这样的工具可以作出圆形工件的任意两条直径.它们的交点就是圆心.

  威廉希尔app

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。