编辑:sx_liuwy
2013-03-13
以下是威廉希尔app 为您推荐的确定圆的条件,希望本篇文章对您学习有所帮助。
确定圆的条件
学习目标:
通过经历不在同一直线上的三个点确定一个圆的探索,了解不在同一直线上的三个点确定一个圆,掌握过不在同一直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心,圆的内接三角形的概念,进一步体会解决数学问题的策略.
学习重点:
1.定理:不在同一直线上的三个点确定一个圆.定理中“不在同一直线”这个条件不可忽略,“确定”一词应理解为“有且只有” .
2.通过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心为三角形的外心,这个三角形叫圆的内接三角形.只要三角形确定,那么它的外心和外接圆半径也随之确定了.
学习难点:
分析作圆的方法,实质是设法找圆心.过已知点作圆的问题,就是对圆心和半径的探讨.
学习方法:
教师指导学生自主探索交流法.
学习过程:
一、举例:
【例1】 下面四个命题中真命题的个数是( )
①经过三点一定可以做圆;
②任意一个三角形一定有一个外接圆,而且只有一个外接圆;
③任意一个圆一定有一个内接三角形,而且只有一个内接三角形;
④三角形的外心到三角形三个顶点的距离相等.
A.4个 B.3个 C.2个 D.1个
【例2】 在△ABC中,BC=24cm,外心O到BC的距离为6cm,求△ABC的外接圆半径.
【例3】 如图,点A、B、C表示三个村庄,现要建一座深水井泵站,向三个村庄分别送水,为使三条输水管线长度相同,水泵站应建在何处?请画出图,并说明理由.
【例4】 阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.
如图3-4-5中的三角形被一个圆所覆盖,图3-4-6中的四边形被两个圆所覆盖.
回答下列问题:
(1)边长为1cm的正方形被一个半径为r的圆所覆盖,r的最小值是 cm.
(2)边长为1cm的等边三角形被一个半径为r的圆所覆盖,r的最小值是 cm.
(3)边长为2cm,1cm的矩形被两个半径都为r的图所覆盖,r的最小值是 cm,这两个圆的圆心距是 cm.
【例5】 已知Rt△ABC的两直角边为a和b,且a,b是方程x2-3x+1=0的两根,求Rt△ABC的外接圆面积.
【例6】 如图,有一个圆形铁片,用圆规和直尺将它分成面积相等的两部分.
二、随堂练习
一、填空题
1.经过平面上一点可以画 个圆;经过平面上两点A、B可以作 个圆,这些圆的圆心在 .
2.经过平面上不在同一直线上的三点可以作 个圆.
3.锐角三角形的外心在 ;直角三角形的外心在 ;钝角三角形的外心在 .
二、选择题
4.下列说法正确的是( )
A.三点确定一个圆 B.三角形有且只有一个外接圆
C.四边形都有一个外接圆 D.圆有且只有一个内接三角形
5.下列命题中的假命题是( )
A.三角形的外心到三角形各顶点的距离相等
B.三角形的外心到三角形三边的距离相等
C.三角形的外心一定在三角形一边的中垂线上
D.三角形任意两边的中垂线的交点,是这个三角形的外心
6.下列图形一定有外接圆的是( )
A.三角形 B.平行四边形 C.梯形 D.菱形
三、课后练习
1.下列说法正确的是( )
A.过一点A的圆的圆心可以是平面上任意点
B.过两点A、B的圆的圆心在一条直线上
C.过三点A、B、C的圆的圆心有且只有一点
D.过四点A、B、C、D的圆不存在
2.已知a、b、c是△ABC三边长,外接圆的圆心在△ABC一条边上的是( )
A.a=15,b=12,c=1 B.a=5,b=12,c=12
C.a=5,b=12,c=13 D.a=5,b=12,c=14
3.一个三角形的外心在其内部,则这个三角形是( )
A.任意三角形 B.直角三角形 C.锐角三角形 D.钝角三角形
4.在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,则它的外心与顶点C的距离为( )
A.5cm B.6cm C.7cm D.8cm
5.等边三角形的外接圆的半径等于边长的( )倍.
A. B. C. D.
6.已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )
A.2 B.6 C.12 D.7
7.三角形的外心具有的性质是( )
A.到三边距离相等 B.到三个顶点距离相等
C.外心在三角形外 D.外心在三角形内
8.对于三角形的外心,下列说法错误的是( )
A.它到三角形三个顶点的距离相等
B.它与三角形三个顶点的连线平分三内角
C.它到任一顶点的距离等于这三角形的外接圆半径
D.以它为圆心,它到三角形一顶点的距离为半径作圆,必通过另外两个顶点
9.下列说法错误的是( )
A.过直线上两点和直线外一点,可以确定一个圆
B.任意一个圆都有无数个内接三角形
C.任意一个三角形都有无数个外接圆
D.同一圆的内接三角形的外心都在同一个点上
10.在一个圆中任意引两条直径,顺次连接它们的四个端点组成一个四边形,则这个四边形一定是( )
A.菱形 B.等腰梯形 C.矩形 D.正方形
11.若AB=4cm,则过点A、B且半径为3cm的圆有 个.
12.直角三角形三个顶点都在以 为圆心,以 为半径的圆上,直角三角形的外心是 .
13.若Rt△ABC的斜边是AB,它的外接圆面积是121πcm2,则AB= .
14.△ABC的三边3,2, ,设其三条高的交点为H,外心为O,则OH= .
15.在△ABC中,∠C=90°,AB=6,则其外心与垂心的距离为 .
16.外心不在三角形的外部,这三角形的形状是 .
17.锐角△ABC中,当∠A逐渐增大时,其外心向 边移动,∠A=90°,外心位置是 .
18.△ABC的外心是它的两条中线交点,则△ABC的形状为 .
19.如图是一块破碎的圆形木盖,试确定它的圆心.
20.求边长是6cm的等边三角形的外接圆的半径.
21.已知线段a、b、c.求作:(1)△ABC,使BC=a,AC=b,AB=c;(2)⊙O使它经过点B、C,且圆心O在AB上.(作⊙O不要求写作法,但要保留作图痕迹)
22.已知点P在圆周上的点的最小距离为5cm,最大距离为15cm,求该圆的半径.
23.如图,有一个圆形的盖水桶的铁片,部分边沿由于水生锈残缺了一些,很不美观.为了废物利用,将铁片剪去一些使其成为圆形的,应找到圆心,并找到合理的半径,在铁片上画出圆,沿圆剪下即可,问应怎样找到圆心半径?
标签:初三数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。