结识抛物线

编辑:sx_liuwy

2013-03-05

以下是威廉希尔app 为您推荐的 结识抛物线,希望本篇文章对您学习有所帮助。

 结识抛物线

学习目标:

经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究二次函数性质的经验.掌握利用描点法作出y=x2的图象,并能根据图象认识和理解二次函数y=x2的性质.能够作为二次函数y=-x2的图象,并比较它与y=x2图象的异同,初步建立二次函数表达式与图象之间的联系.[

学习重点:

利用描点法作出y=x2的图象过程中,理解掌握二次函数y=x2的性质,这是掌握二次函数y=ax2+bx+c(a≠0)的基础,是二次函数图象、表达式及性质认识应用的开始,只有很好的掌握,才会把二次函数学好.只要注意图象的特点,掌握本质,就可以学好本节.[来

学习难点:

函数图象的画法,及由图象概括出二次函数y=x2性质,它难在由图象概括性质,结合图象记忆性质.

学习方法:[

探索——总结——运用法.

学习过程:

一、作二次函数y=x 的图象。

二、议一议:

1.你能描述图象的形状吗?与同伴交流。

2.图象与x轴有交点吗?如果有,交点的坐标是什么?

3.当x<0时,y随着x的增大,y的值如何变化?当x>0时呢?

4.当x取什么值时,y的值最小?

5.图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流。

三、y=x 的图象的性质:

三、例题:

【例1】求出函数y=x+2与函数y=x2的图象的交点坐标.

【例2】已知a<-1,点(a-1,y1)、(a,y2)、(a+1,y3)都在函数y=x2的图象上,则( )

A.y1

四、练习 作业: 小结:

  威廉希尔app

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。