二次函数的图象

编辑:sx_liuwy

2013-02-20

以下是威廉希尔app 为您推荐的 二次函数的图象,希望本篇文章对您学习有所帮助。

 二次函数的图象

本节课在二次函数y=ax2和y=ax2+c的图象的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自的性质.旨在全面掌握所有二次函数的图象和性质的变化情况.同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先是从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c.符合学生的认知特点,体会建立二次函数对称轴和顶点坐标公式的必要性.

在教学中,主要是让学生自己动手画图象,通过自己的观察、交流、对比、概括和反思[

等探索活动,使学生达到对抛物线自身特点的认识和对二次函数性质的理解.并能利用它的性质解决问题.

2.4二次函数y=ax2+bx+c的图象(一)

教学目标

(一)教学知识点[

1.能够作出函数y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系.理解a,h,k对二次函数图象的影响.

2.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.

(二)能力训练要求

1.通过学生自己的探索活动,对二次函数性质的研究,达到对抛物线自身特点的认识和对二次函数性质的理解.

2.经历探索二次函数的图象的作法和性质的过程,培养学生的探索能力.

(三)情感与价值观要求

1.经历观察、猜想、总结等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.

2.让学生学会与人合作,并能与他人交流思维的过程和结果.

教学重点[来源:Www.zk5u.com]

1.经历探索二次函数y=ax2+bx+c的图象的作法和性质的过程.

2.能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.

3.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.

教学难点

能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能够理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.

教学方法

探索——比较——总结法.

教具准备

投影片四张

第一张:(记作§2.4.1 A)

第二张:(记作§2.4.1 B)

第三张:(记作§2.4.1 C)

第四张:(记作§2.4.1 D)

教学过程

Ⅰ.创设问题情境、引入新课

[师]我们已学习过两种类型的二次函数,即y=ax2与y=ax2+c,知道它们都是轴对称图形,对称轴都是y轴,有最大值或最小值.顶点都是原点.还知道y=ax2+c的图象是函数y=ax2的图象经过上下移动得到的,那么y=ax2的图象能否左右移动呢?它左右移动后又会得到什么样的函数形式,它又有哪些性质呢?本节课我们就来研究有关问题.

Ⅱ.新课讲解

一、比较函数y=3x2与y=3(X-1)2的图象的性质.

投影片:(§2.4 A)

(1)完成下表,并比较3x2和3(x-1)2的值,

它们之间有什么关系?

X -3 -2 -1 0 1 2 3 4

3x2

3(x-1)2

(2)在下图中作出二次函数y=3(x-1)2的图象.你是怎样作的?

(3)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?

(4)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x值的增大而减小?

[师]请大家先自己填表,画图象,思考每一个问题,然后互相讨论,总结.

[生](1)第二行从左到右依次填:27.12,3,0,3, 12,27,48;第三行从左到右依次填48,27,12,3,0,3, 12,27.

(2)用描点法作出y=3(x-1)2的图象,如上图.

(3)二次函数)y=3(x-1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x-1)2的图象的对称轴是直线x=1,顶点坐标是(1,0).

(4)当x>1时,函数y=3(x-1)2的值随x值的增大而增大,x<1时,y=3(x-1)2的值随x值的增大而减小.

[师]能否用移动的观点说明函数y=3x2与y=3(x-1)2的图象之间的关系呢?

[生]y=3(x-1)2的图象可以看成是函数)y=3x2的图象整体向右平移得到的.

[师]能像上节课那样比较它们图象的性质吗?

[生]相同点:

a.图象都中抛物线,且形状相同,开口方向相同.

b. 都是轴对称图形.

c.都有最小值,最小值都为0.

d.在对称轴左侧,y都随x的增大而减小.在对称轴右侧,y都随x的增大而增大.

不同点:

a.对称轴不同,y=3x2的对称轴是y轴y=3(x-1)2的对称轴是x=1.

b. 它们的位置不问.[来源:Www.zk5u.com]

c. 它们的顶点坐标不同. y=3x2的顶点坐标为(0,0),y=3(x-1)2的顶点坐标为(1,0),

联系:

把函数y=3x2的图象向右移动一个单位,则得到函数y=3(x-1)2的图像.

二、做一做

投影片:(§2.4.1 B)

在同一直角坐标系中作出函数y=3(x-1)2和y=3(x-1)2+2的图象.并比较它们图象的性质.

[生]图象如下

它们的图象的性质比较如下:

相同点:

a.图象都是抛物线,且形状相同,开口方向相同.

b. 都足轴对称图形,对称轴都为x=1.

c. 在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.

不同点:

a.它们的顶点不同,最值也不同.y=3(x-1)2的顶点坐标为(1.0),最小值为0.y=3(x-1)2+2的顶点坐标为(1,2),最小值为2.

b. 它们的位置不同.

联系:

把函数y=3(x-1)2的图象向上平移2个单位,就得到了函数y=3(x-1)2+2的图象.

三、总结函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象之间的关系.

[师]通过上画的讨论,大家能够总结出这三种函数图象之间的关系吗?

[生]可以.

二次函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象都是抛物线.并且形状相同,开口方向相同,只是位置不同,顶点不同,对称轴不同,将函数y=3x2的图象向右平移1个单位,就得到函数y=3(x-1)2的图象;再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.

[师]大家还记得y=3x2与y=3x2-1的图象之间的关系吗?

[生]记得,把函数y=3x2向下平移1个平位,就得到函数y=3x2-1的图象.

[师]你能系统总结一下吗?

[生]将函数y=3x2的图象向下移动1个单位,就得到了函数y=3x2-1的图象,向上移动1个单位,就得到函数y=3x2+1的图象;将y=3x2的图象向右平移动1个单位,就得到函数y=3(x-1)2的图象:向左移动1个单位,就得到函数y=3(x+1)2的图象;由函数y=3x2向右平移1个单位、再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.

[师]下面我们就一般形式来进行总结.

投影片:(§2.4.1 C)

一般地,平移二次函数y=ax2的图象便可得到二次函数为y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的图象.

(1)将y=ax2的图象上下移动便可得到函数y=ax2+c的图象,当c>0时,向上移动,当c<0时,向下移动.

(2)将函数y=ax2的图象左右移动便可得到函数y=a(x-h)2的图象,当h>0时,向右移动,当h<0时,向左移动.

(3)将函数y=ax2的图象既上下移,又左右移,便可得到函数y=a(x-h)+k的图象.

因此,这些函数的图象都是一条抛物线,它们的开口方向,对称轴和顶点坐标与a,h,k的值有关.

下面大家经过讨论之后,填写下表:

y=a(x-h)2+k 开口方向 对称轴 顶点坐标

a>0

a<0

四、议一议

投影片:(§2,4.1 D)

(1)二次函数y=3(x+1)2的图象与二次函数y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?

(2)二次函数y=-3(x-2)2+4的图象与二次函数y=-3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?

(3)对于二次函数y=3(x+1)2,当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数y=3(x+1)2+4呢?

[师]在不画图象的情况下,你能回答上面的问题吗?

[生](1)二次函数y=3(x+1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x+1)2的图象的对称轴是直线x=-1,顶点坐标是(-1,0).只要将y=3x2的图象向左平移1个单位,就可以得到y=3(x+1)2的图象.

(2)二次函数y=-3(x-2)2+4的图象与y=-3x2的图象形状相同,只是位置不同,将函数y=-3x2的图象向右平移2个单位,就得到y=-3(x-2)2的图象,再向上平移4个单位,就得到y=-3(x-2)2+4的图象y=-3(x-2)2+4的图象的对称轴是直线x=2,顶点坐标是(2,4).

(3)对于二次函数y=3(x+1)2和y=3(x+1)2+4,它们的对称轴都是x=-1,当x<-1时,y的值随x值的增大而减小;当x>-1时,y的值随x值的增大而增大.

Ⅲ.课堂练习

随堂练习

Ⅳ.课时小结

本节课进一步探究了函数y=3x2与y=3(x-1)2,y=3(x-1)2+2的图象有什么关系,对称轴和顶点坐标分别是什么这些问题.并作了归纳总结.还能利用这个结果对其他的函数图象进行讨论.

Ⅴ.课后作业

习题2.4

Ⅵ.活动与探究

二次函数y= (x+2)2-1与y= (x-1)2+2的图象是由函数y= x2的图象怎样移动得到的?它们之间是通过怎样移动得到的?

解:y= (x+2)2-1的图象是由y= x2的图象向左平移2个单位,再向下平移1个单位得到的,y= (x-1)2+2的图象是由y= x2的图象向右平移1个单位,再向上平移2个单位得到的.

y= (x+2)2-1的图象向右平移3个单位,再向上平移3个单位得到y= (x-1)2+2的图象.

y= (x-1)2+2的图象向左平移3个单位,再向下平移3个单位得到y= (x+2)2-1的图象.

板书设计

§4.2.1 二次函数y=ax2+bx+c的图象(一) 一、1. 比较函数y=3x2与y=3(x-1)2的

图象和性质(投影片§2.4.1 A)

2.做一做(投影片§2.4.1 B)

3.总结函数y=3x2,y=3(x-1)2y= 3(x-1)2+2的图象之间的关系(投影片§2.4.1 C)

4.议一议(投影片§2.4.1 D)

二、课堂练习

1.随堂练习

2.补充练习

三、课时小结

四、课后作业

备课资料

参考练习

在同一直角坐标系内作出函数y=- x2,y=- x2-1,y=- (x+1)2-1的图象,并讨论它们的性质与位置关系.

解:图象略

它们都是抛物线,且开口方向都向下;对称轴分别为y轴y轴,直线x=-1;顶点坐标分别为(0,0),(0,-1),(-1,-1).

y=- x2的图象向下移动1个单位得到y=- x2-1 的图象;y=- x2的图象向左移动1个单位,向下移动1个单位,得到y=- (x+1)2-1的图象. 

  威廉希尔app

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。