编辑:
2011-05-26
学习载体设计:
(1)实践:(a)过一点A是否可以作圆?如果能作,可以作几个?
(b)过两个点A、B是否可以作圆?如果能作,可以作几个?……(发现新问题).
(2)实验:应用电脑动画,使学生观察、发现新问题.
(3)作图:已知:不在同一条直线上的三个已知点A、B、C(如图)
求作:⊙O,使它经过点A、B、C.
(4)应用和拓展:给弧找圆心、三角形的外接圆.不在同一条直线上的四个点能否作圆,什么情况下能?什么情况下不能?
(三)学生交流、师生对话活动设计:
学生交流与师生对话,在上课之前无法确定,要根据学生学习中的需要,但在两处必须要进行:(1)在实践(或实验)中发现的问题;(2)解决问题的方法.
探究活动
确定圆的个数
1、如图1,直线上两个不同点A、B和直线外一点P可以确定一个圆;如图2,直线上三个不同点A、B、C和直线外一点P可以确定三个圆;……;那么直线上n个不同点A1、A2、A3……An和直线外一点P可以确定多少个圆?
……
2、如图4,直线上n个不同点A1、A2、A3……An和直线外两个不同的点P、Q,则这(n+2)个点最多可以确定多少个圆?
3、如图5,在⊙O上的n个不同点A1、A2、A3……An和P,可以确定多少个圆?
参考答案:
1、可以确定 个圆;
2、分类求解
(1)取P点和直线上两个点,一共可以确定 个圆;
(2)取Q 点和直线上两个点,一共可以确定 个圆;
(3)取P 、Q 两点和直线上一个点,一共n个圆;
∴最多可以确定 个圆.
3、可以确定 个圆.
标签:初三数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。