编辑:sx_bilj
2014-01-30
为了不让大家因假期而和其他同学拉下差距,小编特地为大家准备了这篇九年级数学寒假作业之求二次函数的解析式,希望你们能时刻记住自己的主要任务还是学习。
(一)基础过关1、二次函数解析式常用的有三种形式:
(1)一般式:_______________(a≠0)(2)顶点式:_______________ (a≠0)
(3)交点式:
2、(1) 已知二次函数的图象过(1,0),(-1,-4)和(0,-3)三点,求这个二次函数解析式。
(2)已知二次函数的图象经过原点,且当x=1时,y有最小值-1, 求这个二次函数的解析式。
(3)已知二次函数的图象与x轴交点的横坐标分别是x1=-3,x2=1,且与y轴交点为(0,-3),求这个二次函数解析式。
(二)能力提升
1、已知二次函数的图象经过原点及点( , ),且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为 .
2、已知二次函数的图象经过点(4,-3),并且当x=3时有最大值4;
3、2、如图所示,已知抛物线的对称轴是直线x=3,它与x轴交于A、B两点,与y轴交于C点,点A、C的坐标分别是(8,0)(0,4),求这个抛物线的解析式。
(三) 综合拓展
如图,直线 交 轴于点 ,交 轴于点 ,抛物线 的顶点为 ,且经过点 .
⑴求该抛物线的解析式;
⑵若点 ( , )在抛物线上,求 的值
由精品小编为大家提供的这篇九年级数学寒假作业之求二次函数的解析式就到这里了,希望这篇文章可以帮助到您!
相关推荐:
标签:数学寒假作业
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。