青岛版初二数学下册《怎样判定三角形相似》知识点整理

编辑:sx_yanxf

2016-05-28

每天坚持整理知识点,到考试时才能方便复习。威廉希尔app 为大家整理了怎样判定三角形相似知识点整理,供大家参考阅读。

相似三角形的判定定理:

(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;

(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似

(简叙为:两边对应成比例且夹角相等,两个三角形相似.);

(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似

(简叙为:三边对应成比例,两个三角形相似.);

(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似

(简叙为两角对应相等,两个三角形相似.).

直角三角形相似的判定定理:

(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似;(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.

2性质定理编辑

(1)相似三角形的对应角相等;

(2)相似三角形的对应边成比例;

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比;

(4)相似三角形的周长比等于相似比;

(5)相似三角形的面积比等于相似比的平方.

3判定方法编辑

预备定理

平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)

定义

对应角相等,对应边成比例的两个三角形叫做相似三角形。

判定定理

常用的判定定理有以下6条:

判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。(简叙为:两角对应相等,两个三角形相似。)(AA)

判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)(SAS)

判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)(SSS)

判定定理4:两三角形三边对应平行,则两三角形相似。(简叙为:三边对应平行,两个三角形相似。)

判定定理5:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。(简叙为:斜边与直角边对应成比例,两个直角三角形相似。)(HL)

判定定理6:如果两个三角形全等,那么这两个三角形相似(相似比为1:1)(简叙为:全等三角形相似)。

相似的判定定理与全等三角形基本相等,因为全等三角形是特殊的相似三角形。[1]

4一定相似编辑

符合下面的情况中的任何一种的两个(或多个)三角形一定相似:

1.两个全等的三角形

全等三角形是特殊的相似三角形,相似比为1:1。

2.任意一个顶角或底角相等的两个等腰三角形

两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。

3.两个等边三角形

两个等边三角形,三个内角都是60度,且边边相等,所以相似。

4.直角三角形被斜边上的高分成的两个直角三角形和原三角形

由于斜边的高形成两个直角,再加上一个公共的角,所以相似。[1]

5定理推论编辑

推论一:顶角或底角相等的两个等腰三角形相似。

推论二:腰和底对应成比例的两个等腰三角形相似。

推论三:有一个锐角相等的两个直角三角形相似。

推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。

推论五:如果一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

性质

1.相似三角形对应角相等,对应边成正比例。

2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

3.相似三角形周长的比等于相似比。

4.相似三角形面积的比等于相似比的平方。

5.相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方

6.若a/b =b/c,即b²=ac,b叫做a,c的比例中项

7.a/b=c/d等同于ad=bc.

8.不必是在同一平面内的三角形里。

6相似三角形的传递性

如果△ABC∽△A₁B₁C₁,△A₁B₁C₁∽△A₂B₂C₂,那么△ABC∽△A₂B₂C₂.

威廉希尔app 初中频道为大家推荐的怎样判定三角形相似知识点整理,大家仔细阅读了吗?更多参考复习资料尽在威廉希尔app 。

相关推荐:

2016学年初二下册《反证法》知识点归纳:例题解析

沪教版八年级下册数学《勾股定理》知识点归纳 

标签:数学知识点

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。