初二数学知识点:北师大版初二下册

编辑:

2013-12-11

第四章 相似图形

一、线段的比

※1、如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n ,或写成 .

※2、 四条线段a、b、c、d中,如果a与b的比等于c与d的比,即 ,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.

※3、注意点:

①a:b=k,说明a是b的k倍;

②由于线段 a、b的长度都是正数,所以k是正数;

③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;

④除了a=b之外,a:b≠b:a, 与 互为倒数;

⑤比例的基本性质:若 , 则ad=bc; 若ad=bc, 则

二、黄金分割

※1、如图1,点C把线段AB分成两条线段AC和BC,如果 ,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.

※2、黄金分割点是最优美、最令人赏心悦目的点.

四、相似多边形

¤1、一般地,形状相同的图形称为相似图形.

※2、对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.

五、相似三角形

※1、在相似多边形中,最为简简单的就是相似三角形.

※2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.

※3、全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.

※4、相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.

※5、相似三角形周长的比等于相似比.

※6、相似三角形面积的比等于相似比的平方.

六、探索三角形相似的条件

※1、相似三角形的判定方法:

一般三角形 直角三角形

基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.

①两角对应相等;

②两边对应成比例,且夹角相等;

③三边对应成比例. ①一个锐角对应相等;

②两条边对应成比例:

a. 两直角边对应成比例;

b. 斜边和一直角边对应成比例.

※2、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.

※3、平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.

八、相似的多边形的性质

※相似多边形的周长等于相似比;面积比等于相似比的平方.

九、图形的放大与缩小

※1. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形; 这个点叫做位似中心; 这时的相似比又称为位似比.

※2. 位似图形上任意一对对应点到位似中心的距离之比等于位似比.

◎3. 位似变换:

①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心.

②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形.

③利用位似的方法,可以把一个图形放大或缩小.

第五章 数据的收集与处理

一、 每周干家务活的时间

※1、所要考察的对象的全体叫做总体;

把组成总体的每一个考察对象叫做个体;

从总体中取出的一部分个体叫做这个总体的一个样本.

※2、为一特定目的而对所有考察对象作的全面调查叫做普查;

为一特定目的而对部分考察对象作的调查叫做抽样调查.

二、数据的收集

※1、抽样调查的特点: 调查的范围小、节省时间和人力物力优点.但不如普查得到的调查结果精确,它得到的只是估计值.

而估计值是否接近实际情况还取决于样本选得是否有代表性.

第六章 证明(一)

二、 定义与命题

※1、 一般地,能明确指出概念含义或特征的句子,称为定义.

定义必须是严密的.一般避免使用含糊不清的术语,例如"一些"、"大概"、"差不多"等不能在定义中出现.

※2、可以判断它是正确的或是错误的句子叫做命题.

正确的命题称为真命题,错误的命题称为假命题.

※3、 数学中有些命题的正确性是人们在长期实践中总结出来的,并且把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.

※4、有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.

¤5、根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明.

三. 为什么它们平行

※1、平行判定公理: 同位角相等,两直线平行.(并由此得到平行的判定定理)

※2、平行判定定理: 同旁内互补,两直线平行.

※3、平行判定定理: 同错角相等,两直线平行.

四、如果两条直线平行

※1. 两条直线平行的性质公理: 两直线平行,同位角相等;

※2. 两条直线平行的性质定理: 两直线平行,内错角相等;

※3. 两条直线平行的性质定理: 两直线平行,同旁内角互补.

五、三角形和定理的证明

※1. 三角形内角和定理: 三角形三个内角的和等于180°

¤2. 一个三角形中至多只有一个直角

¤3. 一个三角形中至多只有一个钝角

¤4. 一个三角形中至少有两个锐角

六、关注三角形的外角

※1. 三角形内角和定理的两个推论:

推论1: 三角形的一个外角等于和它不相邻的两个内角的和;

推论2: 三角形的一个外角大于任何一个和它不相邻的内角.

(注:※表示重点部分;¤表示了解部分;◎表示仅供参阅部分;)

希望同学们能够认真阅读初二数学知识点:北师大版初二下册,努力提高自己的学习成绩。

相关推荐

初二数学知识点总结  

初二数学上册知识点北师大版

标签:数学知识点

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。