八年级数学初二第二单元同步试卷含答案(苏科版)

编辑:

2016-10-21

19.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是 15 .

【考点】角平分线的性质.

【分析】过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.

【解答】解:过D作DE⊥BC于E,

∵∠A=90°,

∴DA⊥AB,

∵BD平分∠ABC,

∴AD=DE=3,

∴△BDC的面积是 ×DE×BC= ×10×3=15,

故答案为:15.

【点评】本题考查了角平分线性质和三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.

20.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,那么点D到BC的距离是 3 .

【考点】角平分线的性质;勾股定理.

【分析】首先过点D作DE⊥BC于E,由在Rt△ABC中,∠A=90°,BD平分∠ABC,根据角平分线的性质,即可得DE=AD,又由勾股定理求得AD的长,继而求得答案.

【解答】解:过点D作DE⊥BC于E,

∵在Rt△ABC中,∠A=90°,BD平分∠ABC,

即AD⊥BA,

∴DE=AD,

∵在Rt△ABC中,∠A=90°,AB=4,BD=5,

∴AD= =3,

∴DE=AD=3,

∴点D到BC的距离是3.

故答案为:3.

【点评】此题考查了角平分线的性质与勾股定理的应用.此题难度不大,注意数形结合思想的应用,注意掌握辅助线的作法.

21.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为 15 .

【考点】角平分线的性质.

【专题】几何图形问题.

【分析】要求△ABD的面积,现有AB=10可作为三角形的底,只需求出该底上的高即可,需作DE⊥AB于E.根据角平分线的性质求得DE的长,即可求解.

【解答】解:作DE⊥AB于E.

∵AD平分∠BAC,DE⊥AB,DC⊥AC,

∴DE=CD=3.

∴△ABD的面积为 ×3×10=15.

故答案是:15.

【点评】此题主要考查角平分线的性质;熟练运用角平分线的性质定理,是很重要的,作出并求出三角形AB边上的高时解答本题的关键.

22.如图,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,则∠AOQ= 35 °.

【考点】角平分线的性质.

【分析】根据到角的两边距离相等的点在角的平分线上判断OQ是∠AOB的平分线,然后根据角平分线的定义解答即可.

【解答】解:∵QC⊥OA于C,QD⊥OB于D,QC=QD,

∴OQ是∠AOB的平分线,

∵∠AOB=70°,

∴∠AOQ= ∠A0B= ×70°=35°.

标签:数学试卷

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。