2015-2016学年初二上册数学期中测试题

编辑:

2015-10-29

9.如图,在锐角△ABC中,A B=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是(  )

A.   B. 6  C.   D. 3

考点:  轴对称-最短路线问题.

分析: 作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值,再根据AD是∠BAC的平分线可知M′H=M′N′,再由锐角三角函数的定义即可得出结论.

解答: 解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.

∵AD是∠BAC的平分线,

∴M′H=M′N′,

∴BH是点B到直线AC的最短距离(垂线段最短),

∵AB=6,∠BAC=45°,

∴BH=AB•sin45°=6× =3 .

∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=3 .

故选C.

点评: 本题考查的是轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.

10.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则BD的长为(  )

A. 1 B. 1.5 C. 2 D. 2.5

考点: 等腰三角形的判定与性质.

分析: 延长BD与AC交于点E,由题意可推出BE=AE,依据等角的余角相等,即可得等腰三角形BCE,可推出BC=CE,AE=BE=2BD,根据AC=5,BC=3,即可推出BD的长度.

解答: 解:延长BD与AC交于点E,

∵∠A=∠ABD,

∴BE=AE,

∵BD⊥CD,

∴BE⊥CD,

∵CD平分∠ACB,

∴∠BCD=∠ECD,

∴∠EBC=∠BEC,

∴△BEC为等腰三角形,

∴BC=CE,

∵BE⊥CD,

∴2BD=BE,

∵AC=5,BC=3,

∴CE=3,

∴AE=AC﹣EC=5﹣3=2,

∴BE=2,

∴BD=1.

故选A.

点评: 本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.

标签:数学试卷

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。