编辑:
2015-10-23
14.(2014秋•兴化市校级期末)已知等腰三角形的两边长分别为4cm和7cm,则这个三角形的周长为 15cm或18cm .
考点: 等腰三角形的性质.
分析: 根据等腰三角形的性质,分两种情况:①当腰长为4cm时,②当腰长为7cm时,解答出即可.
解答: 解:根据题意,
①当腰长为4cm时,周长=4+4+7=15(cm);
②当腰长为7cm时,周长=7+7+4=18(cm).
故答案为:15cm或18cm.
点评: 此题主要考查学生对等腰三角形的性质的理解和掌握,是一道基础题.注意还要应用三角形的三边关系验证能否组成三角形.
15.(2012春•金台区期末)如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF= 74 度.
考点: 三角形内角和定理.
分析: 利用三角形的内角和外角之间的关系计算.
解答: 解:∵∠A=40°,∠B=72°,
∴∠ACB=68°,
∵CE平分∠ACB,CD⊥AB于D,
∴∠BCE=34°,∠BCD=90﹣72=18°,
∵DF⊥CE,
∴∠CDF=90°﹣(34°﹣18°)=74°.
故答案为:74.
点评: 主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;(3)三角形的一个外角>任何一个和它不相邻的内角.注意:垂直和直角总是联系在一起.
16.(2005•绵阳)如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是 5 cm.
考点: 等腰三角形的判定与性质;平行线的性质.
分析: 分别利用角平分线的性质和平行线的判定,求得△DBP和△ECP为等腰三角形,由等腰三角形的性质得BD=PD,CE=PE,那么△PDE的周长就转化为BC边的长,即为5cm.
解答: 解:∵BP、CP分别是∠ABC和∠ACB的角平分线,
∴∠ABP=∠PBD,∠ACP=∠PCE,
∵PD∥AB,PE∥AC,
∴∠ABP=∠BPD,∠ACP=∠CPE,
∴∠PBD=∠BPD,∠PCE=∠CPE,
∴BD=PD,CE=PE,
∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=5cm.
故答案为:5.
点评: 此题主要考查了平行线的判定,角平分线的性质及等腰三角形的性质等知识点.本题的关键是将△PDE的周长就转化为BC边的长.
2015年八年级数学上册半期试卷就分享到这里,希望以上内容对您有所帮助!
相关推荐
标签:数学试卷
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。