编辑:
2015-07-15
23.(本题满分8分)
已知,如图, 是 的角平分线,点 、 分别在 、 上,且 ∥ ,
∥ .
求证:
24.(本题 满分10分)
甲、乙两台机器加工相同的零件,甲机器加工160个零件所用的时间与乙机器加工120个零件所用的时间相等.已知甲、乙两台机器每小时共加工35个零件,求甲、乙两台机器每小时各加工多少个零件?
25.(本题满分12分)
如图,一次函数 的图象与反比例函数y= – 3x的图像交于 、
两点,与x轴交于 点,且 、 两点关于y轴对称.
(1)求 、 两点的坐标以及一次函数的函数关系式;
(2)求 的面积.
(3)在 x轴上是否存在点 ,使得 的值最大.若存在,
求出点 的坐标,若不存在,请说明理由.
26.(本题满分12分)
(1)如图1, 、 是正方形 的边 及 延长线上的点,且 ,则 与 的数量关系是 ▲ .
(2)如图2, 、 是等腰 的边 及 延长线上的点,且 ,连接 交 于点 , 交 于点 ,试判断 与 的数量关系,并说明理由;
(3)如图3,已知矩形 的一条边 ,将矩形 沿过 的直线折叠,使得顶点 落在 边上的 点处。动点 在线段 上(点 与点 、 不重合),动点 在线段 的延长线上,且 ,连接 交 于点 ,作 于点 ,且 ,试根据上题的结论求出矩形ABCD的面积
图1 图2 图3
27.(本题满分12分)
阅读理解:对于任意正实数a、b,∵ ≥0, ∴ ≥0,
∴ ≥ ,只有当a=b时,等号成立.
结论:在 ≥ (a、b均为正实数)中,若ab为定值p,则a+b≥ ,只有当a=b时,a+b有最小值 .
根据上述内容,填空:若m>0,只有当m= 时, 有最小值 ,最小值为 .
探索应用:如图,已知 , , 为双曲线
(x>0)上的任意一点,过点 作 ⊥x轴于点 ,
⊥y轴于点D.求四边形 面积的最小值,并说明
此时四边形 的形状.
实际应用:已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共490元;二是燃油费,每千米为 元;三是折旧费,它与路程的平方成正比,比例系数为 .设该汽车一次运输的路程为 千米,求当 为多少时,该汽车平均每千米的运输成本最低?最低平均每千米的运输成本是多少元?
编辑老师在此也特别为朋友们编辑整理了八年级下学期期末考试数学试卷。更多相关信息请继续关注八年级数学期末试卷栏目!
标签:数学试卷
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。