初二年级数学上册期末练习题

编辑:

2015-01-10

三、计算题(每题7分)

19.计算:( ﹣ )÷

20.解方程: .

四、解答题(21-24每题10分,25-26每题12分)

21.先化简,再求值:  ,其中 .

22.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.

(1)求证:△DEF是等腰三角形;

(2)当∠A=40°时,求∠DEF的度数;

23.如图所示,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,若AB=17,BD=12,

(1)求证:△BCD≌△ACE;

(2)求DE的长度.

24.如图,在△ABC中,AB=BC,点D在AB的延长线上.

(1)利用尺规按要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).

①作∠CBD的平分线;

②作BC边的中垂线交BC边于点E,连接AE并延长交∠CBD的平分线于点F.

(2)由(1)得:BF与边AC的位置关系是          .

25.某公司拟为贫困山区建一所希望小学,甲、乙两个工程队提交了投标方案,若独立完成该项目,则甲工程队所用时间是乙工程队的1.5倍;若甲、乙两队合作完成该项目,则共需72天.

(1)甲、乙两队单独完成建校工程各需多少天?

(2)若由甲工程队单独施工,平均每天的费用为0.8万元,为了缩短工期,该公司选择了乙工程队,但要求其施工的总费用不能超过甲工程队,求乙工程队平均每天的施工费用最多为多少万元?

26. 1.问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.

探究展示:小宇同学展示出如下正确的解法:

解:OM=ON,证明如下:

连接CO,则CO是AB边上中线,

∵CA=CB,∴CO是∠ACB的角平分线.(依据1)

∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)

反思交流:

(1)上述证明过程中的“依据1”和“依据2”分别是指:

依据1:                                                         ;

依据2:                                                         .

(2)你有与小宇不同的思考方法吗?请写出你的证明过程.

拓展延伸:

(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.

标签:数学试卷

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。