编辑:
2014-06-15
求∠4的度数.
22.(本题6分)下图是由5个边长为1的小正方形拼成的.
(1)将该图形分成三块,使由这三块可拼成一个正方形(在图中画出);
(2)求出所拼成的正方形的面积S.
23.(本题8分)如图,AD是ΔABC的高,E为AC上一点,BE交AD于F,且有DC=FD,AC=BF.
(1)说明ΔBFD≌ΔACD理由;
(2)若AB= ,求AD的长.
24.(本题5分)如图,已知在△ABC中,∠A=120º,∠B=20º,∠C=40º,请在三角形的边上找一点P,并过点P和三角形的一个顶点画一条线段,将这个三角形分成两个等腰三角形.(要求两种不同的分法并写出每个等腰三角形的内角度数)
25.(本题9分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个)
1号 2号 3号 4号 5号 总分
甲班 89 100 96 118 97 500
乙班 100 96 110 91 104 500
统计发现两班总分相等,此时有学生建议,可以通过考查数据中的其他信息作为参考,请解答下列问题:
(1)计算两班的优秀率;(2)求两班比赛数据的中位数;
(3)计算两班比赛数据的方差;
(4)你认为应该定哪一个班为冠军?为什么?
26.(本题6分)如图是一个几何体的三视图,求该几何体的体积(单位:cm, 取
3.14,结果保留3个有效数字).
27.(本题10分)如图,P是等边三角形ABC内的一点,连结PA、PB、PC,以BP为边作等边三角形BPM,连结CM.
(1)观察并猜想AP与CM之间的大小关系,并说明你的结论;
(2)若PA=PB=PC,则△PMC是________ 三角形;
(3)若PA:PB:PC=1: : ,试判断△PMC的形状,并说明理由.
四、自选题(本题5分,本题分数可记入总分,若总分超过100分,则仍记为100分)
28.在Rt⊿ABC中,∠C=90°,∠A、∠B、∠C的对边长分别为a、b、c,设⊿ABC的面积为S,周长为 .
(1)填表:
三边长a、b、c
a+b-c
3、4、5 2
5、12、13 4
8、15、17 6
(2)如果a+b-c=m,观察上表猜想: = ,(用含有m的代数式表示);
(3)说出(2)中结论成立的理由.
八年级数学期中试卷参考答案及评分意见
一、精心选一选
题号 1 2 3 4 5 6 7 8 9 10
答案 B B D B A D C A C A
二、专心填一填
11.120° 12.40° 13.③ 14.社 15.25° 16.5000 17.10 18.不会
19.2008 20.2
三、耐心答一答
21.(本题6分) 解: ∵∠2=∠1=100°,∴m‖n. …… 3分
∴∠3=∠5. ∴∠4=180°-∠5=60° … 3分
22.(本题6分)
解:(1)拼图正确(如图); ……………………3分
(2)S=5. ………………………………… 3分
23. (本题8分)
解:(1)∵AD是ABC的高, ∴△ACD与△BFD都是直角三角形. ……… 1分
在Rt△ACD与Rt△BFD中
∵
∴Rt△ACD≌ Rt△BFD. ………………………………………………… 3分
(2)∵Rt△ACD≌ Rt△BFD,
∴AD=BD. ………………………………………………………………… 1分
在Rt△ACD中,∵AD2+BD2=AB2, ∴2 AD2= AB2, ∴AD= . ……3分
24.(本题5分)
给出一种分法得2分(角度标注1分).
25. (本题9分)
解:(1)甲班的优秀率:2÷5=0.4=40%,乙班的优秀率:3÷5=0.6=60% …1分
(2)甲班5名学生比赛成绩的中位数是97个
乙班5名学生比赛成绩的中位数是100个 ……………………… 2分
(3) , . ……………………… 2分 , ………………………… 2分
标签:数学试卷
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。