编辑:sx_bij
2013-06-08
【摘要】多做练习题和试卷,可以使学生了解各种类型的题目,使学生在数学中做到举一反三。在此威廉希尔app 为您提供“八年级下册数学黄金分割测试题”,希望给您学习带来帮助,使您学习更上一层楼!
八年级下册数学黄金分割测试题
一、目标导航
1.黄金分割定义:点C把线段AB分成两条线段AC和BC,如果AC:AB=BC:AC,那么称线段AB被点C黄金分割.点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.
2. .
二、基础过关
1.若点P是AB的黄金分割点,则线段AP、PB、AB满足关系式 .
2.黄金矩形的宽与长的比大约为________(精确到0.001).
3.电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,若舞台AB长为20m,试计算主持人应走到离A点至少 m处?,如果他向B点再走 m,也处在比较得体的位置.(结果精确到0.1m)
三、能力提升
4.有以下命题:①如果线段d是线段a,b,c的第四比例项,则有 ;②如果点C是线段AB的中点,那么AC是AB、BC的比例中项;③如果点C是线段AB的黄金分割点,且AC>BC,那么AC是AB与BC的比例中项;④如果点C是线段AB的黄金分割点,AC>BC,且AB=2,则AC= -1.其中正确的判断有( )
A.1个 B.2个 C.3个 D.4个
5.已知点M将线段AB黄金分割(AM>BM),则下列各式中不正确的是( )
A.AM∶BM=AB∶AM B.AM= AB
C.BM= AB D.AM≈0.618AB
6.已知C是线段AB的黄金分割点(AC>BC), 则AC∶BC = ( )
A. ( -1)∶2 B. ( +1)∶2 C.(3- )∶2 D.(3+ )∶2
7.在长度为1的线段上找到两个黄金分割点P,Q.则PQ=( )
A . B . C. D .
8.已知线段MN = 1,在MN上有一点A,如果AN = .求证:点A是MN的黄金分割点.
四、聚沙成塔
9.如图,以长为2的线段AB为边作正方形ABCD,取AB的中点P,连结PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.
(1)求AM、DM的长.
(2)求证:AM2=AD•DM.
(3)根据(2)的结论你能找出图中的黄金分割点吗?
10.如果一个矩形ABCD(AB
4.2黄金分割
1.AP =BP•AB或PB =AP•AB;2.0.618;3.7.6,4.8;4.C;5.C;6.B;7.C;8证得AM =AN•MN即可;9.⑴AM= -1;DM=3- ;⑵略;⑶点M是线段AD的黄金分割点;10.通过计算可得 ,所以矩形ABFE是黄金矩形.
标签:数学试卷
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。