特殊三角形综合测试题(附答案)

编辑:sx_liuwy

2013-03-08

以下是威廉希尔app 为您推荐的特殊三角形综合测试题(附答案),希望本篇文章对您学习有所帮助。

特殊三角形综合测试题(附答案)

一、选择题(每小题3分,共30分)

1.下列图形中,不一定是轴对称图形的是 ( )

A.线段 B.等腰三角形 C.直角三角形 D.圆

2.若等腰三角形的两边长分别为4和9,则周长为( )

A.17 B.22 C.13 D.17或22

3.如果三角形一边上的高平分这条边所对的角,那么此三角形一定是 ( )

A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形

4.小明将两个全等且有一个角为60°的直角三角板拼成如图所示的图形,其中两条较长直角边在同一直线上,则图中等腰三角形的个数是 ( )

A.4 B.3 C.2 D.1

5.如图,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E为垂足,下列结论正确的是( )

A.AC=2AB B.AC=8EC C.CE= BD D.BC=2BD

6.有四个三角形,分别满足下列条件:(1)一个角等于另外两个内角之和;(2)三个内角之比为3:4:5;(3)三边之比为5:12:13;(4)三边长分别为5,24,25.其中直角三角形有 ( )

A.1个 B.2个 C.3个 D.4个

7.如图,EA⊥AB,BC⊥AB,AB=AE=2BC,D为AB的中点,有以下判断:①DE=AC;②DE⊥AC;③∠CAB=30°;④∠EAF=∠ADE.其中正确结论的个数是 ( )

A.1 B.2 C.3 D.4

8.如图,以点A和点B为两个顶点作位置不同的等腰直角三角形,一共可以作出 ( )

A.2个 B.4个 C.6个 D.8个

9.如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2=MB2等于 ( )

A.9 B.35 C.45 D.无法计算

10.若△ABC是直角三角形,两条直角边分别为5和12,在三角形内有一

点D,D到△ABC各边的距离都相等,则这个距离等于 ( )

A.2 B.3 C.4 D.5

二、填空题(每小题4分,共24分)

11.已知等腰三角形中顶角的度数是底角的3倍,那么底角的度数是________.

12.已知等腰△ABC的底边BC=8cm,且|AC-BC|=2cm,那么腰AC的长为__________.

13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条小路,他们仅仅少走了_______步路,(假设2步为1m),却踩伤了花革.

14.如图,在△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为______cm.

15.已知,如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,不添加辅助线,请你写出三个正确结论:(1)____________;(2)_____________;(3)_____________.

16.已知,如图,正方形ABCD中,对角线AC和BD相交于点0,E,F分别是边AD,DC上的点,若AE=4cm,FC=3cm,且0E⊥0F,则EF=______cm.

三、解答题(共66分)

17.(6分)如图,在△ABC中,AB=AC,点D在BC边上,DE⊥AB,DF⊥AC,垂足分别为E,F,添加一个条件,使DE=DF.

18.(6分)如图,已知∠AOB=30°,0C平分∠AOB,P为OC上一点,PD∥0A交OB于D,PE⊥OA于E,如果OD=4,求PE的长.

19.(6分)如图,△ABC是等边三角形,ABCD是等腰直角三角形,其中∠BCD=90°,求∠BAD的度数.

20.(8分)如图,E为等边三角形ABC边AC上的点,∠1=∠2,CD=BE,判断△ADE的形状.

21.(8分)如图所示,已知:在△ABC中,∠A=80°,BD=BE,CD=CF.求∠EDF的度数.

22.(10分)如图,已知点B,C,D在同一条直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H.

(1)说明:△BCE≌△ACD;

(2)说明:CF=CH;

(3)判断△CFH的形状并说明理由.

23.(10分)如图,已知在△ABC中,∠ABC=90°,AB=BC,三角形的顶点分别在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长.

24.(12分)如图(1)所示,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE的异侧,BD⊥AE于D,CE⊥AE于E.说明:

(1)BD=DE+EC:

(2)若直线AE绕点A旋转到图(2)位置时(BD

(3)若直线AE绕点A旋转到图(3)时(BD>CE),其余条件不变,问BD与DE,CE的关系如何?请直接写出结果.

参考答案

第2章水平测试

1.C 2.B 3.A 4.B 5.B 6.C 7.C 8.C 9.C l0.A ll.36° 12.6cm或12cm 13.4 14.6.5 l5.解:答案不唯一,∠E=30°,∠ABD=∠DBC=30°,BD⊥AC等 l6.5 17.解:BD=CE或BE=CF 说明△BDE≌△CDF 18.解:作PF⊥OB于F,∴PF=PE ∵OC平分∠AOB ∴∠l=∠2 ∵PD∥0A ∴∠2=∠3 ∴∠l=∠3 ∴PD=OD=4 ∴PE=PF= PD=2

19.解:∵△ABC是等边三角形 ∴AC=BC ∵△BCD是等腰直角三角形,∠BCD=90°∴BC=CD ∴AC=CD ∴∠CAD=∠ADC= = =75°∴∠BAD=∠CAD+∠BAC=75°+60°= l35°20.解:∵△ABC为等边三角形 ∴ △ABE≌△ACD ∴AE=AD ∴∠DAE=∠BAC=60°∴△ADE为等边三角形 21.解:∵BD=BE ∴∠l=∠2= ∵CD=CF ∴∠3=∠4= ∵∠EDF+∠2+∠3=180°∴∠EDF=180°-(∠2+∠3)= 180°-( + )= (∠B+∠C)= (180°-∠A)= (180°-80°)=50°

22.解:(1) ∵△ABC和△CDE都是正△ ∴BC=AC,∠BCE=∠ACD=120° CE=CD ∴△BCE≌△ACD(SAS)

(2)∵△BCE≌∠ACD ∴∠CBF=∠CAH 又∵BC=AC,∠BCF=∠ACH=60°∴△BCF≌∠ACH(ASA) ∴CF=CH(3) △CFH是等边三角形,理由:∵CF=CH,∠FCH=60°∴△CFH是等边三角形 23.解:分别过A,C作AE⊥l3,CD⊥l3,垂足分别为E,D 由题意可知AE=3,CD=2+3=5 又∵AB=BC,∠ABE=∠BCD ∴Rt△AEB≌△CBD(AAS) ∴AE=BD=3 ∴CB2=BD2+CD2=32+52=34 ∴AC2=AB2+CB2=34×2=68 ∵AC>0 ∴AC= =

24.解:(1) ∵△ABC为等腰直角三角形 ∴∠BAE+∠EAC=90°∵BD⊥AE,CE⊥AE ∴∠ADB=∠AEC=90°∠BAE+∠ABD=90°∴∠EAC=∠ABD ∵AB=AC ∴△ABD≌△CAE ∴BD=AE,AD=EC ∴BD=AD+DE=EC+DE (2)BD=EC+DE仍成立 (3)BD=EC+DF仍成立

威廉希尔app 初二数学试题

标签:数学试卷

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。