实数的故事

编辑:sx_guoxj

2012-02-24

【编者按】快乐学习尽在2018威廉希尔决赛赔率  (点点试试

实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。

词典含义 读音:shí shù 英语:real number

(一)数学名词。有理数和无理数的总称。

(二)准确的数字。【例】公司到底还有多少钱?请你告诉我实数!

基本概念

实数可以分为有理数和无理数两类,或代数数和超越数两类,或正实数,负实数和零三类。有理数可以分成整数和分数,而整数可以分为正整数、零和负整数。分数可以分为正分数和负分数。无理数可以分为正无理数和负无理数。实数集合通常用字母 R 或 R^n 表示。而R^n 表示 n 为实数空间。实数是不可数的。实数是实分析的核心研究对象。

实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数,包括整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

1)相反数(只有符号不同的两个数,他们的和为零,我们就说其中一个是另一个的相反数) 实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。

2)绝对值(在数轴上一个数a与原点0的距离) 实数a的绝对值是:|a|

①a为正数时,|a|=a(不变)

②a为0时, |a|=0

③a为负数时,|a|= -a(为a的绝对值)

(任何数的绝对值都大于或等于0,因为距离没有负的。)

3)倒数(两个实数的乘积是1,则这两个数互为倒数) 实数a的倒数是:1/a (a≠0)

4)数轴

(1)数轴的三要素:原点、正方向和单位长度。

(2)数轴上的点与实数一一对应。

历史来源

埃及人早在大约公元前1000年就开始运用分数了。在公元前500年左右,以毕达哥拉斯为首的希腊数学家们意识到了无理数存在的必要性。印度人于公元600年左右发明了负数,据说中国也曾发明负数,但稍晚于印度。

直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括无限循环小数、有限小数、整数。 数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。 实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母 R 或 R^n 表示。而 R^n 表示 n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。 实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

相关定义

从有理数构造实数

实数可以用通过收敛于一个唯一实数的十进制或二进制展开如 {3, 3.1, 3.14, 3.141, 3.1415,…} 所定义的序列的方式而构造为有理数的补全。实数可以不同方式从有理数构造出来。这里给出其中一种,其他方法请详见实数的构造。

公理的方法

设 R 是所有实数的集合,则:

集合 R 是一个域: 可以作加、减、乘、除运算,且有如交换律,结合律等常见性质。

域 R 是个有序域,即存在全序关系≥ ,对所有实数 x, y 和 z:

若 x ≥ y 则 x + z ≥ y + z;

若 x ≥ 0 且 y ≥ 0 则 xy ≥ 0。

集合 R 满足完备性,即任意 R 的有空子集S ( S∈R,S≠Φ),若 S 在 R 内有上界,那么 S 在 R 内有上确界。

最后一条是区分实数和有理数的关键。例如所有平方小于 2 的有理数的集合存在有理数上界,如 1.5;但是不存在有理数上确界(因为 √2 不是有理数)。

实数通过上述性质唯一确定。更准确的说,给定任意两个有序域 R1 和 R2,存在从 R1 到 R2 的唯一的域同构,即代数学上两者可看作是相同的。

 

相关推荐:

相似三角形的定义

如何判定相似三角形

相似三角形例年真题(一)  

专题推荐:

北京精锐教育 初 中一对一辅导专题
 


标签:数学试卷

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。