2014-2015八年级下册数学教案:运用公式法

编辑:

2015-03-26

点拨:把 分解因式时:

1、如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数P的符号相同

2、如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数P的符号相同

3、对于分解的两个因数,还要看它们的和是不是等于一次项的系数P

变式练习:

(1) (2)

(3)

借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,

叫做十字相乘法

口诀:首尾拆,交叉乘,凑中间。

拓展训练:

若把代数式化为的形式,其中m,k为常数,求m+k的值

已知,求x,y的值

当x为何值时,多项式取得最小值,其最小值为多少?

回顾与思考

学习目标:

(1)提高因式分解的基本运算技能

(2)能熟练进行因式分解方法的综合运用.

学习准备:

1、把一个多项式化成                           的形式,叫做把这个多项式分解因式。

要弄清楚分解因式的概念,应把握如下特点:

(1)结果一定是                      的形式;

(2)每个因式都是                                   ;

(3)各因式一定要分解到                                为止。

2、分解因式与                               是互逆关系。

3、分解因式常用的方法有:

(1)提公因式法:

(2)应用公式法:①平方差公式:                            ②完全平方公式:

(3)分组分解法:am+an+bm+bn=

(4)十字相乘法:=

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。