编辑:sx_bij
2013-06-24
学习目标
1、通过运算多项式乘法,来推导平方差公式,学生的认识由一般法则到特殊法则的能力。
2、通过亲自动手、观察并发现平方差公式的结构特征,并能从广义上理解公式中字母的含义。
3、初步学会运用平方差公式进行计算。
学习重难点 重点是平方差公式的推导及应用。
难点是对公式中a,b的广泛含义的理解及正确运用。
自学过程设计 教学过程设计
看一看
认真阅读教材,记住以下知识:
文字叙述平方差公式:_________________
用字母表示:________________
做一做:
1、完成下列练习:
①(m+n)(p+q)
②(a+b)(x-y)
③(2x+3y)(a-b)
④(a+2)(a-2)
⑤(3-x)(3+x)
⑥(2m+n)(2m-n)
想一想
你还有哪些地方不是很懂?请写出来。
_______________________________
_______________________________
________________________________.
1.下列计算对不对?若不对,请在横线上写出正确结果.
(1)(x-3)(x+3)=x2-3( ),__________;
(2)(2x-3)(2x+3)=2x2-9( ),_________;
(3)(-x-3)(x-3)=x2-9( ),_________;
(4)(2xy-1)(2xy+1)=2xy2-1( ),________.
2.(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;
(3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________.
3.计算:50×49=_________.
应用探究
1.几何解释平方差公式
展示:边长a的大正方形中有一个边长为b的小正方形。
(1)请计算图的阴影部分的面积(让学生用正方形的面积公式计算)。
(2)小明将阴影部分拼成一个长方形,这个长方形长与宽是多少?你能表示出它的面积吗?
图2
2.用平方差公式计算
(1)103×93 (2)59.8×60.2
拓展提高
1.阅读题:
我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)时,发现直接运算很麻烦,如果在算式前乘以(2-1),即1,原算式的值不变,而且还使整个算式能用乘法公式计算.解答过程如下:
原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)
=……=264-1
你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值吗?请试试看!
2.仔细观察,探索规律:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1
……
(1)试求25+24+23+22+2+1的值;
(2)写出22006+22005+22004+…+2+1的个位数.
堂堂清
一、选择题
1.下列各式中,能用平方差公式计算的是( )
(1)(a-2b)(-a+2b);
(2)(a-2b)(-a-2b);
(3)(a-2b)(a+2b);
(4)(a-2b)(2a+b).
A.(1)(2) B.(2)(3)
C.(3)(4) D.(1)(4)
2.计算(-4x-5y)(5y-4x)的结果是( )
A.16x2-25y2 B.25y2-16x2 C.-16x2-25y2 D.16x2+25y2
3.下列计算错误的是( )
A.(6a+1)(6a-1)=36a2-1
B.(-m-n)(m-n)=n2-m2
C.(a3-8)(-a3+8)=a9-64 D.(-a2+1)(-a2-1)=a4-1
4.下列计算正确的是( )
A.(a-b)2=a2-b2
B.(a-b)(b-a)=a2-b2
C.(a+b)(-a-b)=a2-b2 D.(-a-b)(-a+b)=a2-b2
5.下列算式能连续两次用平方差公式计算的是( )
A.(x-y)(x2+y2)(x-y) B.(x+1)(x2-1)(x+1)
C.(x+y)(x2-y2)(x-y) D.(x+y)(x2+y2)(x-y)
二、计算:
(1)(5ab-3x)(-3x-5ab)
(2)(-y2+x)(x+y2)
教后反思 本节课是运算多项式乘法,来推导平方差公式,使学生的认识由一般法则到特殊法则的能力,并能归纳总结出平方差公式的结构特征,利用平方差公式来进行运算。
标签:初二数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。