线段的垂直平分线

编辑:

2013-06-15

2、定理的获得

让学生用文字语言将上述问题表述出来.

定理:线段垂直平分线上的点和这条线段两个端点的距离相等.

强调说明:线段垂直平分线性质定理是证明线段相等的一条依据,在计算、作图中也有重要作用.

学生根据上述学习,提出自己的问题(待定)

学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.

3、逆定理的获得

类比角平分线逆定理获得的过程,让学生讲解下一环节所要学习研究的内容.

这一过程,完全由学生自己通过小组的形式,代表到台前讲解.

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

强调说明:定理与逆定理的联系与区别

相同点:结构相同、证明方法相同

不同点:用途不同,定理是用来证线段相等

4、定理与逆定理的应用

(1)讲解例1(投影例1)

例1 如图,△ABC中,∠C= ,∠A= ,AB的在垂线交AC于D,交AB于E

求证:AC=3CD

证明:∵DE垂直平分AB

∴AD=BD

∴∠1=∠A=

∴∠2=

∴CD= BD

∴CD= AD

∴AD=2CD

即AC=3CD

讲解例2(投影例2 )

例2:在△ABC中,AB=AC,AB的中垂直线与AC所在直线相交所得的锐角为 ,求底角B的大小.

(学生思考、分析、讨论,教师巡视,适当参与讨论)

解:(1)当AB的中垂线MN与AC相交时,如图(1),

∵∠ADE= ,∠AED=

∴∠A= -∠AED= - =

∵AB=AC ∴∠B=∠C

∴∠B=

(2)当的中垂线与的延长线相交时,如图(2)

∵∠ADE= ,∠AED=

∴∠BAE=-∠AED=-=

∵AB=AC ∴∠B=∠C

∴∠B=

例3 (1)在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=,求∠NMB的大小

(2)如果将(1)中∠A的度数改为 ,其余条件不变,再求∠NMB的大小

(3)你发现有什么样的规律性?试证明之.

(4)将(1)中的∠A改为钝角,对这个问题规律性的认识是否需要加以修改

解:(1)∵AB=AC

∴∠B=∠ACB

∴∠B=

∵∠BNM=

(2)如图,同(1)同理求得

(3)如图,∠NMB的大小为∠A的一半

5、课堂小结:

(1)线段垂直平分线性质定理和逆定理

(2)在应用时,易忽略直接应用,往往又重新证三角形的全等,使计算或证明复杂化.

6、布置作业:

书面作业P119#2、3

思考题:已知:如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高

求证:AD垂直平分EF

证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC

∴DE=DF

∴D在线段EF的垂直平分线上

在Rt△ADE和Rt△ADF中

∴Rt△ADE≌Rt△ADF

∴AE=AF

∴A点也在线段EF的垂直平分线上

∵两点确定一条直线

∴直线AD就是线段EF的垂直平分线

板书设计:

 

更多精彩内容请点击:   2018威廉希尔决赛赔率  > 初二 > 数学 > 初二数学教案

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。