矩形 教学示例

编辑:

2013-06-15

教师问:四边形内角和等于多少度?根据四边形内角和定理,可知第四个角是多少度?最后由定义知此四边形为矩形.

分析判定定理2

教师问:如图1,这个定理有几个条件?学生答;有两个.(1)是平行四边形,(2)两条对角线相等.

教师问:据此只需征什么就可以了?

学生答:只要证一个角是直角就可以了.

引导学生完成证明.

教师问:两条对角线相等的四边形是不是矩形?

学生答:不是.

教师问:为什么?

学生答:因为两条对角线相等,推不出四边形是平行四边形.

归纳矩形判定方法(由学生小结):

(1)一个角是直角的平行四边形.

(2)对角线相等的平行四边形.

(3)有三个角是直角的四边形.

2.矩形判定方法的实际应用

除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.

3.矩形知识的综合应用

例2  已知   的对角线 , 相交于 ,△ 是等边三角形, ,求这个平行四边形的面积(图2).

分析解题思路:

(1)先判定   为矩形.

(2)求出 △ 的直角边 的长.

(3)计算 .

【总结、扩展】

1.小结

(1)矩形的判定方法l、2都是有两个条件:

①是平行四边形,②有一个角是直角或对角线相等.

判定方法3的两个条件是:①是四边形,②有三个直角.

(2)要注意不要不加考虑地把性质定理的逆命题作为矩形的判定定理.

2.思考题:已知:如图3   中,以 为斜边作 △ ,又 为直角.求证:四边形 是矩形.

八、布置作业

教材P158中3、4,P159中13(1);P196中8

九、板书设计

矩形(二)

矩形的判定               小结

判定定理1:……     例2……   (1)……

判定定理2:……            (2)……

十、随堂练习

教材P148中1、2

补充

1.若 是四边形 对角线的交点,且 ,则四边形 是( )

A.平行四边形 B.矩形 C.梯形 D.以上答案均不对

2.已知:在四边形 中, ,且

求证:四边形 是矩形

3.已知   中, , , ,

求证:四边形 是矩形

更多精彩内容请点击:   2018威廉希尔决赛赔率  > 初二 > 数学 > 初二数学教案

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。