梯形 教学设计示

编辑:

2013-06-15

(1)如图,过点 作 、 ,交 于 ,得 ,所以得 .

又由   得 ,因此可得 .

(2)作高 、 ,通过证   推出 .

(3)分别延长 、 交于点 ,则 与 都是等腰三角形,所以可得 .

(证明过程略).

例3  求证:对角线相等的梯形是等腰梯形.

已知:如图,在梯形 中, , .

求证: .

分析:证明本题的关键是如何利用对角线相等的条件来构造等腰三角形.

在 和 中,已有两边对应相等,别人要能证 ,就可通过证   得到 .

(引导学生说出证明思路,教师板书证明过程)

证明:过点 作 ,交 延长线于 ,得   ,

∴ .

∵ , ∴

∵ ,  ∴

又∵ 、 ,∴

∴  .

说明:如果  、 交于点 ,那么由 可得 , ,即等腰梯形对角线相交,可以得到以交点为顶点的两个等腰三角形,这个结论虽不能直接引用,但可以为以后解题提供思路.

例4  画一等腰梯形,使它上、下底长分别5cm,高为4cm,并计算这个等腰梯形的周长和面积.

分析:如图,先算出 长,可画等腰三角形 ,然后完成   的画图.

画法:①画 ,使 .

.

②延长 到 使 .

③分别过 、 作 , , 、 交于点 .

四边形 就是所求的等腰梯形.

解:梯形 周长 .

答:梯形周长为26cm,面积为 .

【总结、扩展】

小结:(由学生总结)

(l)等腰梯形的判定方法:①先判定它是梯形②再用“两腰相等”“或同一底上的两个角相等”来判定它是等腰梯形.

(2)梯形的画图:一般先画出有关的三角形,在此基础上再画出有关的平行四边形,最后得到所求图形.(三角形奠基法)

八、布置作业

l.已知:如图,梯形 中, , 、 分别为 、 中点,且 ,求证:梯形 为等腰梯形.

九、板书设计

 

更多精彩内容请点击:   2018威廉希尔决赛赔率  > 初二 > 数学 > 初二数学教案

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。