反比例函数

编辑:sx_liuwy

2013-02-11

下面是威廉希尔app 为您推荐的反比例函数希望能给您带来帮助。

反比例函数

知识技能目标

1.理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;

2.利用反比例函数的图象解决有关问题.

过程性目标

1.经历对反比 例函数图象的观察、分析、讨论、概括过程,会说出它的性质;

2.探索反比例函数的图象的性质,体会用数 形结合思想解数学问题.

教学过程

一、创设情境

上节的练习中,我们画出了问题1中函数 的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数 (k是常数,k≠0)的图象,探究它有什么性质.

二、探究归纳

1.画出函数 的图象.

分析 画出函数图象一般分 为列表、描点、连线三个步骤,在反比例函数中自变量x ≠0.

解 1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1) 、(-3,-2)、(-2,-3)等.

3.连线:用平滑的 曲线将第一象限各点依次连起来,得到图象的 第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.

上述图象,通常称为双曲线(hyperbola).

提问 这两条曲线会与x轴、y轴相交吗?为什么?

学生试一试:画出反比例函数 的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤).

学生讨论、交流以下问题,并 将讨论、交流的结果回答 问题.

1.这个函数的图 象在哪两个象限?和函数 的图象 有什么不同?

2.反比例函数 (k≠0)的图象在哪两个象限内?由什么确定?

3.联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

反比例函数 有下列性质:

(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

注 1.双曲线的两个分支与x轴和y轴没有交点;

2.双曲线的两个分支关于原点成中心对称.

以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

在问题1中反映了汽车比自行车的速 度快,小华乘汽车比骑自行车到镇上的时间少.

在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小.

三、实践应用

例1 若反比例函数 的图象在第二、四象限,求m的值.

分析 由反比例函 数的定义可知: , 又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值.

解 由题意, 得 解得 .

例2 已知反比例函数 (k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx-k的图象经过的象限.

分析 由于反比例函数 (k≠0 ),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx-k中,k<0,可知,图象过二、四象限,又-k>0,所以直线与y轴的交点在x轴的上方.

解 因为反比例函数 (k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx-k的图象经过一、二、四象限.

例3 已知反比例函数的图象过点(1,-2).

(1)求这个函数的解析式,并画出图象;

(2)若点A(-5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?

分析 (1) 反比例函数的图象过点(1,-2),即当x=1时,y=-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;

(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上.

解 (1)设:反比例函数的解析式为: (k≠0).

而反比例函数的图象过 点(1,-2),即当x=1时,y=-2.

所以 ,k=-2.

即反比例函数的解析式为: .

(2)点A(-5,m)在反比例函数 图象上,所以 ,

点A的坐标为 .

点A关于x轴的对称点 不在这个图象上;

点A关于y轴的对称点 不在这个图象上;

点A关于原点的对称点 在这个图象上;

例4 已知函数 为反比例函数.

(1)求m的值;

(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

(3)当-3≤x≤ 时,求此函数的最大值和最小值.

解 (1)由反比例函数的定义可知: 解得,m=-2.

(2)因为-2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大.

(3)因为在第个象限内,y随x的增大而增大,

所以当x= 时,y最大值= ;

当x=-3时,y最小值= .

所以当-3≤x≤ 时,此函数的最大值为8,最小值为 .

例5 一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.

(1)写出用高表示长的函数关 系式;

(2)写出自变量x的取值范围;

( 3)画出函数的图象.

解 (1)因为100=5xy,所以 .

(2)x>0.

(3)图象如下:

说明 由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.

四、交流反思

本节课学习了画反比例函数的图象和探讨了反比例函数的性质.

1.反比例函数的图象是双曲线(hyperbola).

2.反比例函数有如下性质:

(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线 从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

五、检测反馈

1.在同一直角坐标系中画出下列函数的图象:

(1) ; (2) .

2.已知y是x的反比例函数,且当x=3时,y=8,求:

(1)y和x的函数关系式;

(2)当 时,y的值;

(3)当x取 何值时, ?

3.若反比例函数 的图象在所在象限内,y随x的增大而增大,求n的值.

4.已知反比例函数 经过点A(2,-m)和B(n,2n),求:

(1)m和n的值;

(2)若图象上有两点P1(x1,y1)和P2( x2,y2),且x1<0< x2,试比较y1和 y2的大小.

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。