初二数学上册第六章一次函数教案

编辑:sx_liuwy

2013-02-01

下面是威廉希尔app 为您推荐的 初二数学上册第六章一次函数教案,希望能给您带来帮助。

 初二数学上册第六章一次函数教案

总课时:7课时 使用人:

备课时间:第八周 上课时间:第十一周

第1课时:6、1函数

教学目标

知识与技能

1.初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;

2.根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;

3.了解函数的三种表示方法。

过程与方法

1.通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;

2.经历从具体实例中抽象概括的过程,进一步发展学生的抽象思维能力,体会函数的模型思想;

3.通过对函数概念的学习,培养学生的语言表达能力。

情感态度与价值观

1.在函数概念形成的过程中,培养学生联系实际、善于观察、乐于探索和勤于思考的精神

教学重点:

1.掌握函数的概念,以及函数的三种表示方法;

2.会判断两个变量之间是否是函数关系。

教学难点:

1.对函数概念的理解;

2.把实际问题抽象概括为函数问题。

教学准备:多媒体课件

教学准备

教具:教材,课件,电脑

学具:教材,笔,练习本

教学过程

第一环节:创设情境、导入新课(3分钟,欣赏图片,思考问题)

内容:

展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k线图等,提请学生思考问题。

第二环节:展现背景,提供概念抽象的素材(10分钟,学生思考问题,感受变化的量)

内容:

问题1.你去过游乐园吗?你坐过摩天轮吗?你能描述一 下坐摩天轮的感觉吗?

当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗 ?

摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?

问题2 .在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式 ,其中v表示刹车前汽车的速度(单位:千米/时).

(1)公式中有几个变化的量?计算当v分别为50,60,100时,相应的滑行距离s是多少?

(2)给定一个v值,你都能求出相应的s值吗?

问题3.如图,搭一个正方形需要4根火柴棒,按图中方式,动手做一做,完成下表:

正方形个数 1 2 3 4 5

火柴棒根数 4 7 10 13 16

表格中有几个变量?按图中方式搭100个正方形,需要多少根火柴棒?若搭n个正方形,需要多少根火柴棒?

第三环节:概念的抽象(7分钟,得到定义,学生理解知识)

内容:

1.引导学生思考以上三个问题的共同点,进而揭示出函数的概念:

在上面的问题中,都有两个变量,给定其中一个变量(自 变量)的值,相应的就确定了另一个变量(因变量)的值.

一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.

2.点明函数概念中的两个关键词:两个变量,一个x值确定一个y值,它们是判断函数关系的关键。

3.再通过对上面3个情境 的比较,引导学生思考三个情境呈现形式的不同(依次以图像、代数表达式、表格的形式反映两个变量之间的关系),得出函数常用的三种表示 方法:

(1) 图象法 ; (2)列表法 ; (3)解析法。

第四环节:概念辨析与巩固(10分钟,强化训练一对变化量的理解,学生小组讨论)

内容:

1.介绍常量与变量的概念

常量:在某一变化过程中,始终保持不变的量;

变量:在某一变化过程中,可以取不同数值的量 .

指出下列关系式中的变量与常量:

(1)球的表面积S(cm2)与球半 径R(cm)的关系式是S=4 R2

(2)以固定的速度V0(米/秒)向上抛一个球,小球的高度h(米)与小球运动的时间t(秒)之间的关系式是h=V0t-4.9t2.

2.概念 应用举例

1. 小明骑车从家到学校速度是15千米/时,你能表示出他走过的路程s与时间t之间的变化关系吗 ?S是t的函数吗?路程s随时间t的变化的图像是什么?

略解:S=15t,是函数,图像略.

2. 如果A、B路程为200千米,一辆汽车从A地到B地行驶的速度v与行驶时间t是怎样的变化关系?V是t的函数吗?速度v随时间t的变化的图像是什么?

略解: ,是函数,图像略.

3. 若正方形的边长为x,则面积y与边长x之间的关系是什么?y是x的函数吗?面积y随边长x的变化的图像是什么?

略解:s=x2,是函数,图像通过课件展示给同学们

第五环节:课时小结(10分钟,教师引导学生总结,全班交流)

内容:请同学们针对本节的内容进行自我小结,学生之间相互补充后;最后教师总结。

最终总结了下面的内容:

1.初步掌握函数的概念,并能判断两个变量之间的关系是否是函数的关系。

理解函数的概念应抓住以下三点:

(1)函数的概念由三句话组成:“两个变量”,“x的每一个值”,“ y有确定的值”;

(2)判断两个 变量是否有函数关系不是看它们之间是否有关系是存在,更重要的是看对于x的每一个确定的值,y是否有唯一确定的值与之对应;

(3)函数不是数,它是指在某一变化的过程中两个变量之间的关系。

2.在一个函数关系式中,能识别自变量与因变量,并能由给定的自变量的值,相应的求出函数的值。

3.函数的三种表达式:

(1)图象法(用图像来表示函数的方法);

(2)列表法(把自变量x的一系列值和函数y的对应值列成一个表格来表示函数的反方法);

(3)解析法(用代数式来表示函数的方法, 用来表示函数关系的式子叫做函数关系式,函数关系式是等式,在书写时有顺序性,一般写成:“函数=函自变量的代数式”的形式)。

4.学会用辩证唯物主义的观点 的看待一个问题。

5.本节课用到的基本思想是:通过观察、分析、对比、归纳等过程获取数学知识.

第六环节:布置作业

A组(优等生)习题6.1和创新设 计

B组(中等生)创新设计

C组(后三分之一生)习题6.1

教学反思:

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。