初二上册第四章 整式的乘除与因式分解

编辑:lvzw

2012-11-22

编者按:威廉希尔app 小编为大家收集了“初二上册第四章 整式的乘除与因式分解”,供大家参考,希望对大家有所帮助!

一.定义

1.整式乘法

(1).am·an=am+n[m,n都是正整数]

同底数幂相乘,底数不变,指数相加.

(2).(am)n=amn[m,n都是正整数]

幂的乘方,底数不变,指数相乘.

(3).(ab)n=anbn[n为正整数]

积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.

(4).ac5·bc2=(a·b)·(c5·c2)=abc5+2=abc7

单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.

(5).m(a+b+c)=ma+mb+mc

单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,

(6).(a+b)(m+n)=am+an+bm+bn

多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相乘.

2.乘法公式

(1).(a+b)(a-b)=a2-b2

平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.

(2).(a±b)2=a2±2ab+b2

完全平方公式:两数和[或差]的平方,等于它们的平方和,加[或减]它们积的2倍.

3.整式除法

(1)am÷an=am-n[a≠0,m,n都是正整数,且m>n]

同底数幂相除,底数不变,指数相减.

(2)a0=1[a≠0]

任何不等于0的数的0次幂都等于1.

(3)单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

(4)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

4.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.

二.重点

1.(x+p)(x+q)=x2+(p+q)x+pq

2.x3-y3=(x-y)(x2+xy+y2)

3.因式分解两种基本方法:

(1)提公因式法.提取:数字是各项的最大公约数,各项都含的字母,指数是各项中最低的.

(2)公式法.

①a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积

②a2±2ab+b2=(a±b)2两个数的平方和加上[或减去]这两个数的积的2倍,等于这两个数的和[或差]的平方.

以上就是威廉希尔app 为大家提供的“初二上册第四章 整式的乘除与因式分解”希望能对考生产生帮助,更多资料请咨询威廉希尔app 中考频道。

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。