对数螺线的数学小知识

编辑:sx_zhanglz

2015-07-13

大家把理论知识复习好的同时,也应该要阅读,从阅读中找到自己的不足,下面是威廉希尔app 为大家整理的对数螺线,希望对大家有帮助。

对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在科学家的假想中。

螺线特别是对数螺线的美学意义可以用指数的形式来表达:

ρ=αe^(kφ)

其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限不循环小数。

对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。

等角螺线的臂的距离以几何级数递增。

设 L 为穿过原点的任意直线,则 L 与等角螺线的相交的角A永远相等(故其名),而此值为 arccot(b)。

tanA=ρ/d(ρ)=ke^(bθ)/bke^(bθ)=1/b,推出:b=cot(A),推出:角A=arccot(b)。设 C 为以原点为圆心的任意圆,则 C 与等角螺线的相交的角永远相等,而此值为 arctan(b),名为「 倾斜度」

等角螺线是自我相似的;这即是说,等角螺线经放大后可与原图完全相同。

等角螺线的渐屈线和垂足线都是等角螺线。

从 原点到等角螺线的任意点上的长度有限,但由那点出发沿等角螺线走到原点却需绕原点转无限次。这是由 Torricelli 发现的。(由于指数函数的取值范围为负无穷到正无穷,x=0是渐近线,因此永远不会到达原点0,无法从原点出发,上述有误)

在复平面上定义一个复数 z = a + bi,其中 a, b ≠ 0,那么连起 z、z²、z³…… 的曲线就是一条等角螺线。

若 L 是 复平面中的一条直线且不平行于 实数或虚数轴,那么指数函数 ez 会将这些直线映像到以 0 为中心的等角螺线。

使用黄金长方形

以上就是威廉希尔app 为大家提供的对数螺线,大家仔细阅读了吗?加油哦!

相关推荐:

2015精选初中利润与折扣数学公式总结  

选初中课外数学平行四边形定理总结  

标签:数学

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。