数学百科大全之放射性衰变规律

编辑:sx_yangk

2013-11-20

人才源自知识,而知识的获得跟广泛的阅读积累是密不可分的。古人有“书中自有颜如玉”之说。杜甫所提倡的“读书破万卷, 下笔如有神”等,无不强调了多读书广集益的好处。这篇数学百科大全之放射性衰变规律,希望可以加强你的基础。

fangshexing shuaibian guij

放射性衰变规律

law of radioactive decay

指放射性核素的原子数或活度随时间而改变的规律(见放射性、核素)。1903年E.卢瑟福和F.索迪提出的放射性衰变理论首先揭示了放射性物质的不稳定性,并且在研究钍 X((Ra)的放射性衰变率时提出了定量的负指数关系式。它的现代表示方式是:

[239-02]

239-02

                  (1)积分得:

 

[239-09]

239-09

                (2)式(2)两边同乘以

,则得到活度的相应关系:

 

[239-10]

239-10

              (3)式中[239-03]

239-03

是放射性核素原子的衰变率;

O和

是起始时刻(

=0)和

时刻该核素原子的数目;

O和

是起始时刻和

时刻的活度;

 是衰变常数,其物理意义是单位时间内原子核的衰变几率。

 

式(2)表示原子核衰变的统计规律,即放射性原子核的数目随时间按指数规律减少。每一种放射性核素单独衰变时都服从这一基本规律,但是各自具有特征的衰变常数。如铀238的 

为1.55×10(年(,镭226的

为4.33×10(年(。原子核的衰变有时是一代又一代地连续进行,这些混在一起的衰变情况非常复杂。

 

两次连续衰变规律  母体(核素1)衰变成子体(核素2),子体衰变成稳定核素,且母子体处于同一体系中。这时式(1)和式(2)可以计算不同时间核素 1和孤立的核素2的原子数。与核素1共同存在的核素 2的改变速率应该包括两部分,一部分是核素1的衰变而产生核素2,另一部分是核素2的衰变。所以:

[239-04]

239-04

             (4)

 

[239-05]

239-05

    (5)开始时只有母体核素,给定

1,0的样品中,

随时间的变化只取决于

,有三种情况:

 

 核素2的活度(

)最初随时间而增加,然后达到某一饱和值,与核素1的活度(

)相等,随后核素2的活度一直按核素1的半衰期衰减,出现长期平衡(图1[

成长期平衡]

<img src=

成长期平衡" class=image>)。曲线 c是核素1和2的活度总和,曲线a是开始时纯粹核素1的活度,曲线 b是从纯粹核素 1中逐渐积累的核素 2的活度,曲线b

是孤立的核素2的活度随时间衰减的状况。铀238中产生钍234,镭226中产生氡222都属于这种情况。另外,利用反应堆中的中子或加速器产生的离子束通过核反应生产放射性核素时,只要核反应速率保持恒定,放射性核素的活度变化也与长期平衡状况一致。

 

>

 核素2的活度最初随时间而增大,在

达到某一极大值后,核素2的活度大于核素1的活度,随后逐渐趋向于按核素1的半衰期衰减,出现暂时平衡(图2[

>

成暂平衡]

<img src=

>

成暂平衡" class=image>)。曲线a、b、b

、c的说明同图1[ 

成长期平衡]

 <img src=

成长期平衡" class=image>。铅212中产生铋212,碲132中产生碘132都属于这种情况。

 

<

[kg2]

kg2

 在这种情况下不可能出现平衡,核素1和核素2的活度随时间改变的状况见图3 [

<

]

<img src=

<

" class=image>[不成平衡]

不成平衡

 

多次连续衰变规律 1910年英国数学家H.贝特曼得到了这一过程的解。原则上不论有多少成员的放射性衰变系列,数学求算各代成员的原子数和活度都是可能的。实际上中间成员常常可以忽略,一般以考虑两代放射性核素(即母子体)的情况为最普遍。

根据放射性衰变规律,除了计算放射性核素的原子数和活度(这方面的用途很多,如用于放射性核素的生产和地质样品年龄的测算中)以外,通过曲线分析还可以求出放射性核素的半衰期。

感谢你阅读数学百科大全之放射性衰变规律。

标签:数学

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。