来源:网络 编辑:sx_wangha
2018-11-01 09:44:01
本站特为考生朋友们搜集整理了整式乘除与因式分解,其中包括幂的运算性质、整式的乘法等信息,供同学们参考,希望对大家的期末复习有所帮助。
幂的运算性质
1.同底数幂的乘法:
2.幂的乘方(a^m)^n=a^(mn),与积的乘方(ab)^n=a^nb^n
(1)幂的乘方,(a^m)^n=a^(mn),(m, n都为正整数)运用法则时注意以下以几点:
①幂的底数a可以是具体的数也可以是多项式。如[(x+y)2]3的底数为(x+y),是一个多项式,
[(x+y)2]3=(x+y)6
②要和同底数幂的乘法法则相区别,不要出现下面的错误。如:
(a3)4=a7; [(-a)3]4=(-a)7; a3·a4=a12
(2)积的乘方(ab)^n=a^nb^n,(n为正整数)运用法则时注意以下几点:
①注意与前二个法则的区别:积的乘方等于将积的每个因式分别乘方(即转化成若干个幂的乘方),再把所得的幂相乘。
②积的乘方可推广到3个以上因式的积的乘方,如:(-3a2b)3如(a1·a2·…….an)m=a1m·a2m·…….anm
[page]3. 同底数幂的除法:
(1)同底数幂的除法:am÷an=a(m-n) (a≠0, m, n均为正整数,并且m>n)
①同底数幂的除法是整式除法的基础,要熟练掌握。同底数幂的除法法则是根据除法是乘法的逆运算归纳总结出来的,和前面讲的幂的运算的三个法则相比,在这里底数a是不能为零的,否则除数为零,除法就没有意义了。又因为在这里没有引入负指数和零指数,所以又规定m>n。能从特殊到一般地归纳出同底数幂的除法法则。
②同底数幂的两个幂相除,如果被除式的指数与除式的指数相等,那么商等于1,即am÷an=1,m是任意自然数。a≠0, 即转化成a0=1(a≠0)。
③同底数幂的两个幂相除,如果被除式的指数小于除式的指数,即m-n<0时,指数部分为负整数则转化成负整数指数幂,再用负整数指数幂法则。
④要注意和其它几个幂的运算法则相区别。
⑤还应强调:am·an=am+n与am+n÷an=am的互逆运算关系,同时指数的变化也是互逆运算关系,应沟通两者的联系。
(2)零指数:a0=1 (a≠0)
①条件是a≠0,00无意义。
②它是由am÷an=am-n当a≠0,m=n时转化而来的。也就是说当同底数幂相除时,被除式指数与除式的指数相等时即转化成零指数幂,它的结果为1。
(3)负整数指数幂:a-p= (a≠0, p是正整数)①当a=0时没有意义,0-2, 0-3都无意义。
②它是由am÷an=am-n当a≠0, m
#FormatImgID_0#
三、整式的除法
1.单项式除以单项式法则:把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
2.多项式除以单项式的法则:先把这个多项式的每一项除以这个单项式,再把所得的商相加。
四、因式分解:
1.因式分解的定义:
把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解。
掌握其定义应注意以下几点:
①分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;
②因式分解必须是恒等变形;
③因式分解必须分解到每个因式都不能分解为止。
2.弄清因式分解与整式乘法的内在的关系:
因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式。
3.因式分解的常用方法:
(1)提公因式法
①提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:
A 系数——各项系数的最大公约数;
B 字母——各项含有的相同字母;
C 指数——相同字母的最低次数。
②提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式。需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项。
人教版初二数学知识点:整式乘除与因式分解就为朋友们提供到此,更多初二数学知识点信息请时刻关注我我们~
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。