编辑:sx_songyn
2014-06-12
2014年数学竞赛知识点实数题
一、选择题(本题满分42分,每小题7分)
1. 设 ,则 ( A )
A.24. B. 25. C. . D. .
2.在△ABC中,最大角∠A是最小角∠C的两倍,且AB=7,AC=8,则BC=( C )
A. . B. . C. . D. .
3.用 表示不大于 的最大整数,则方程 的解的个数为 ( C )
A.1. B. 2. C. 3. D. 4.
4.设正方形ABCD的中心为点O,在以五个点A、B、C、D、O为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为 ( B )
A. . B. . C. . D. .
5.如图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则 CBE= ( D )
A. . B. . C. . D. .
6.设 是大于1909的正整数,使得 为完全平方数的 的个数是 ( B )
A.3. B. 4. C. 5. D. 6.
二、填空题(本题满分28分,每小题7分)
1.已知 是实数,若 是关于 的一元二次方程 的两个非负实根,则 的最小值是_____ _______.
2. 设D是△ABC的边AB上的一点,作DE//BC交AC于点E,作DF//AC交BC于点F,已知△ADE、△DBF的面积分别为 和 ,则四边形DECF的面积为___ ___.
3.如果实数 满足条件 , ,则 __ ___
4.已知 是正整数,且满足 是整数,则这样的有序数对 共有_7对.
第二试 (A)
一、(本题满分20分)已知二次函数 的图象与 轴的交点分别为A、B,与 轴的交点为C.设△ABC的外接圆的圆心为点P.
(1)证明:⊙P与 轴的另一个交点为定点.
(2)如果AB恰好为⊙P的直径且 ,求 和 的值.
解 (1)易求得点 的坐标为 ,设 , ,则 , .
设⊙P与 轴的另一个交点为D,由于AB、CD是⊙P的两条相交弦,它们的交点为点O,所以OA×OB=OC×OD,则 .
因为 ,所以点 在 轴的负半轴上,从而点D在 轴的正半轴上,
所以点D为定点,它的坐标为(0,1).
(2)因为AB⊥CD,如果AB恰好为⊙P的直径,则C、D关于点O对称,
所以点 的坐标为 ,
即 .
又 ,所以
,解得 .
二.(本题满分25分)设CD是直角三角形ABC的斜边AD上的高, 、 分别是△ADC、△BDC的内心,AC=3,BC=4,求 .
解 作 E⊥AB于E, F⊥AB于F.
在直角三角形ABC中,AC=3,BC=4, .
又CD⊥AB,由射影定理可得 ,
故 ,
.
因为 E为直角三角形ACD的内切圆的半径,
所以 = .
连接D 、D ,则D 、D 分别是∠ADC和∠BDC的平分线,
所以∠ DC=∠ DA=∠ DC=∠ DB=45°,故∠ D =90°,
所以 D⊥ D, .
同理,可求得 , . 所以 = .
标签:实数
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。