最新初一不等式概念知识点及练习题

编辑:jz_fuzz

2015-04-08

学过奥数的孩子在成长当中会自觉不自觉的运用奥数知识来解决生活中的问题,因此,小编为大家编写了这篇最新初一不等式概念知识点及练习题,欢迎阅读!

【性质与概念】

例如lg(1+x)>x是超越不等式。

不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)

“≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。

通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

整式不等式

整式不等式两边都是整式 ( 未知数不在分母上 )

一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式.如3-X>0

同理:二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式

基本性质

①如果x>y,那么yy;(对称性)

②如果x>y,y>z;那么x>z;(传递性)

③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)

④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

⑥如果x>y,m>n,那么x+m>y+n;(充分不必要条件)

⑦如果x>y>0,m>n>0,那么xm>yn;

⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂

或者说,不等式的基本性质有:

①对称性;

②传递性:

③加法单调性:即同向不等式可加性:

④乘法单调性:

⑤同向正值不等式可乘性:

⑥正值不等式可乘方:

⑦正值不等式可开方:

⑧倒数法则。

……

如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,以上是其中比较有名的。

原理

主要的有:

①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。

②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)

③如果不等式F(x)0,那么不等式F(x)H(x)G(x)同解。

④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。

1)不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变。

2)不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变。

3)不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向改变。

由精品小编为大家提供的最新初一不等式概念知识点及练习题就到这里了,愿大家都能学好奥数。

相关推荐

2014年初一奥数试题精编大全  

2014年初中各年级奥数试题精编大全  

标签:初一奥数

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。