成人高考2013高起点数学函数解析

2013-08-31 10:24:31 字体放大:  

(★★★★★)已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0.

●案例探究

[例1]已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤ },求函数g(x)=-3x2+3x-4(x∈B)的最大值.

指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题.

●难点磁场转

(★★★★★)设f(x)=log2 ,F(x)= +f(x).

(1)试判断函数f(x)的单调性,并用函数单调性定义,给出证明;

(2)若f(x)的反函数为f-1(x),证明:对任意的自然数n(n≥3),都有f-1(n)> ;

(3)若F(x)的反函数F-1(x),证明:方程F-1(x)=0有惟一解.

函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.

●难点磁场

(★★★★★)已知函数f(x)=ax3+bx2+cx+d的图象如图,求b的范围.

函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样.本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力.

●难点磁场

(★★★★★)设函数f(x)的定义域为R,对任意实数x、y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4.

(1)求证:f(x)为奇函数;

(2)在区间[-9,9]上,求f(x)的最值.

更多内容请进入:成人高考 > 成考复习 > 高起点辅导 > 数学