您当前所在位置:首页 > 考研 > 考研辅导 > 专业课

2014考研计算机复习:计算机数据结构核心考点解析

编辑:

2013-11-07

核心考点六:对无向连通图特性的理解

无向图的每条边,在顶点计算度的过程中,都要两次参与计算(与边两关联的2个顶点),因此所有顶点的度之和为偶数。

具有n个顶点的无向连通图,其边数大于或等于n-1。

在无向连通图中,所有顶点的度数都有可能大于1。

核心考点七:对m阶B树定义的理解

一棵m阶的B树满足下列条件:

1. 每个结点至多有m棵子树。

2. 除根结点外,其它每个分支至少有m/2棵子树。

3. 根结点至少有两棵子树(除非B树只有一个结点)。

4. 所有叶结点在同一层上。B树的叶结点可以看成一种外部结点,不包含任何信息。

5. 有j个孩子的非叶结点恰好有j-1个关键码,关键码按递增次序排列。结点中包含的信息为 ∶ (p0,k1,p1,k2,p2, … ,kj-1,pj-1)

其中,ki为关键码,且满足ki

核心考点八:带权图的最短路径算法及应用

迪杰斯特拉(Dijkstra)算法求单源最短路径,算法思想:

设S为最短距离已确定的顶点集(看作红点集),V-S是最短距离尚未确定的顶点集(看作蓝点集)。

1.初始化:初始化时,只有源点s的最短距离是已知的(SD(s)=0),故红点集S={s},蓝点集为空。

2.重复以下工作,按路径长度递增次序产生各顶点最短路径,在当前蓝点集中选择一个最短距离最小的蓝点来扩充红点集,以保证算法按路径长度递增的次序产生各顶点的最短路径。当蓝点集中仅剩下最短距离为∞的蓝点,或者所有蓝点已扩充到红点集时,s到所有顶点的最短路径就求出来了。

注意:①若从源点到蓝点的路径不存在,则可假设该蓝点的最短路径是一条长度为无穷大的虚拟路径。②从源点s到终点v的最短路径简称为v的最短路径;s到v的最短路径长度简称为v的最短距离,并记为SD(v)。

核心考点九:堆排序

大根堆的定义:完全二叉树,任一非叶子结点都大于等于它的孩子,也就是说根结点是最大的。而且显然大根堆的任一棵子树也是大根堆。

堆排序的基本思想:记录区的分为无序区和有序区前后两部分;用无序区的数建大根堆,得到的根(最大的数)和无序区的最后一个数交换,也就是将该根归入有序区的最前端;如此重复下去,直至有序区扩展至整个记录区。

具体操作可按下面步骤实现:

1.建大根堆

2.交换根和无序区最后一个数

3.重建大根堆,因为交换只是使根改变了,所以左右子树依然分别是大根堆。

4.比较根,左子树的根和右子树的根,如果根最大,则无须再作调整,树已经是大根堆了;如果左子树的根最大,交换它与根,再递归调整左子树;如果右子树的根最大,交换它与根,再递归调整右子数。

5.递归调整到叶子的时候,树就是大根堆了。

标签:专业课

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。