编辑:sx_wangxd
2013-10-16
2014年考研报名已经开始,离考试的日子越来越近,面对数学这科考研必考的重要科目,威廉希尔app 小编为即将考研的朋友编辑整理了“2014考研高数复习微分方程与无穷级数重点解析”,希望对广大考友有所帮助!
2014考研高数复习微分方程与无穷级数重点解析
一、微分方程
微分方程可视为一元函数微积分学的应用与推广。该部分在考试中以大题与小题的形式交替出现,平均每年所占分值在8分左右。常考的题型包括各种类型微分方程的求解,线性微分方程解的性质,综合应用。
对于该部分内容的复习,考生首先要能识别各种方程类型(一阶:可分离变量的方程、齐次方程、一阶线性方程、伯努利方程(数一、二)、全微分方程(数一);高阶:线性方程、欧拉方程(数一)、高阶可降阶的方程(数一、二)),熟悉其求解步骤,并通过足量练习以求熟练掌握;在此基础上还要具备数学建模的能力——能根据几何或物理背景,建立微分方程。
另外,有几点需提醒考生:
1. 解微分方程主要考查考生计算积分的能力,而实际应用则对考生的综合能力提出较高要求,考生需结合练习把“解方程”和“列方程”的能力练好。
2. 非基本类型的方程一般都可通过变量替换化为基本类型。
3. 考生需弄清常见的物理量、几何量与微分、积分的关系。
二、无穷级数
级数可视为微积分的综合应用。该部分是数一、数三的必考内容,分值约占10%。常考的题型有:常数项级数的收敛性,幂级数的收敛半径和收敛域,幂级数展开,幂级数求和,常数项级数求和以及傅里叶级数。其中幂级数是重点。
结合考试分析,建议考生从以下方面把握该部分内容:
1. 常数项级数
理解其收敛的相关概念并掌握各种收敛性判别法。
2. 幂级数
考试有三方面的要求:幂级数收敛域的计算,幂级数求和,幂级数展开。考生应通过一定量训练使自己具备这三方面的能力——给定幂级数,准确计算其收敛半径进而得到收敛域,能求其和函数,能将一个简单函数在指定点展开成幂级数。
3.傅里叶级数
考试出现频率和考试要求均较低,掌握傅里叶系数的求法,再了解狄利克雷定理的内容即可。
如何有效地复习考研数学?如果我们也视其为一道数学题,我想我们应该明白:我们要做微分运算——拿着放大镜把每个考点弄清,也要做积分运算——持续地投入,积跬步以至千里;我们要有严谨的态度——一张数表里有一个数不同结果就变了,还要有灵活的思维——于点、线、面,数、表、空间,常量、变量、随机变量间自由游弋;面对逝去的光阴不要悔恨——函数都可以不单调,人却要让过去决定未来吗,面对不如意的现状要接纳——作为考生,我们无权更改微分方程的初始条件,我们能做的是接受它,把题漂亮地解出来。
希望各位考生能抓紧时间复习,在数学上取得优异的成绩,以上就是小编为你整理的“2014考研高数复习微分方程与无穷级数重点解析”查看更多考研辅导信息请点击关注>>威廉希尔app >>考研>>考研辅导
标签:数学
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。