编辑:
2011-11-21
4、特征值、特征向量——要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用。有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵。反过来,可由A的特征值,特征向量来确定A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A.
另外,特征向量就是求齐次方程组的基础解系,你前面基础打牢了,这里又不是新的内容。
5、二次型——二次型的内容是针对于只考数学一、数学三的同学。二次型只要把其矩阵对应写出来,其问题都可以转化为对称矩阵的对角型来讨论。所以这部分的内容又联系上前面的内容了。把前面的基础打牢,后面的知识自然就掌握了。
在线性代数的两个大题中,基本上都是多个知识点的综合,从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。因此,把基础烂熟于心之后,再利用做题进行综合思维的锻炼,通过做一些综合性较强的习题(或做近年的研究生考题),边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握。
相信自己一分耕耘一分收获,最后祝考生们考出好成绩!
更多请进入:
标签:数学
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。