编辑:
2010-10-14
四、 随机变量的数字特征
刻画随机变量的性质的数字特征是概率统计的重要内容,不仅是本章内容的重点,并且在全书中,亦是考察的重点、难点。
熟练掌握数字特征,包括数学期望(均值)、方差、标准差定义及其性质;
在掌握这些基本概念后,需要会计算随机变量函数的数学期望,矩、协方差、相关系数性质及其公式,尤其是变量的函数的期望、方差公式(这些是在后面统计章节运用最多的公式);
独立与相关性概念区分。独立能够推出不相关,反之并不一定成立。因相关性考察的是随机变量间的线性关系,两个随机变量可能不存在线性关系(及不相关),但是有其他的函数关系,因此并不一定独立。并且注意二维正态随机变量的独立性与相关性的等价性(这点在题目中经常体现)。
五、 大数定律和中心极限定理
了解大数定律和中心极限定理的内容,并熟记它们成立的条件(独立同分布)。
求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概率(或已知概率求随机变量个数)的问题,一般采用中心极限定理处理。
六、 数理统计的基本概念
本章是统计章节的基石,因此需要非常熟练掌握其中的定义,运算法则。
数理统计的基本概念主要是总体、简单随机样本、统计量、样本均值、样本方差及样本矩。重点是正态总体的抽样分布,包括样本均值、样本方差、样本矩、两个样本的均值差、两个样本方差比的抽样分布;
熟练掌握 分布、t分布和F分布的概念性质.可了解它们之间的关系,来记忆它们的定义(这三个分布式后续章节统计方法的基础,需要熟练掌握它们的定义及数字特征);
若为总体X的一组简单随机样本,则凡是涉及到统计量的分布问题,一般要用到 分布,t分布和F分布的定义进行讨论;
正态总体的样本均值与样本方差的分布,所得到的3个定理,是后续章节的理论基础,并且其结论是考试的重点!!
标签:数学
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。